KDTalker / difpoint /src /models /predictor.py
ChaolongYang's picture
Upload 242 files
475d332 verified
import pdb
import threading
import os
import time
import numpy as np
import onnxruntime
import torch
from torch.cuda import nvtx
from collections import OrderedDict
import platform
import spaces
try:
import tensorrt as trt
import ctypes
except ModuleNotFoundError:
print("No TensorRT Found")
numpy_to_torch_dtype_dict = {
np.uint8: torch.uint8,
np.int8: torch.int8,
np.int16: torch.int16,
np.int32: torch.int32,
np.int64: torch.int64,
np.float16: torch.float16,
np.float32: torch.float32,
np.float64: torch.float64,
np.complex64: torch.complex64,
np.complex128: torch.complex128,
}
if np.version.full_version >= "1.24.0":
numpy_to_torch_dtype_dict[np.bool_] = torch.bool
else:
numpy_to_torch_dtype_dict[np.bool] = torch.bool
class TensorRTPredictor:
"""
Implements inference for the EfficientDet TensorRT engine.
"""
@spaces.GPU
def __init__(self, **kwargs):
"""
:param engine_path: The path to the serialized engine to load from disk.
"""
if platform.system().lower() == 'linux':
ctypes.CDLL("./difpoint/checkpoints/liveportrait_onnx/libgrid_sample_3d_plugin.so", mode=ctypes.RTLD_GLOBAL)
else:
ctypes.CDLL("./difpoint/checkpoints/liveportrait_onnx/grid_sample_3d_plugin.dll", mode=ctypes.RTLD_GLOBAL)
# Load TRT engine
self.logger = trt.Logger(trt.Logger.VERBOSE)
trt.init_libnvinfer_plugins(self.logger, "")
engine_path = os.path.abspath(kwargs.get("model_path", None))
print('engine_path', engine_path)
self.debug = kwargs.get("debug", False)
assert engine_path, f"model:{engine_path} must exist!"
print(f"loading trt model:{engine_path}")
with open(engine_path, "rb") as f, trt.Runtime(self.logger) as runtime:
assert runtime
self.engine = runtime.deserialize_cuda_engine(f.read())
print('self.engine', self.engine)
assert self.engine
self.context = self.engine.create_execution_context()
assert self.context
# Setup I/O bindings
self.inputs = []
self.outputs = []
self.tensors = OrderedDict()
# TODO: 支持动态shape输入
for idx in range(self.engine.num_io_tensors):
name = self.engine[idx]
is_input = self.engine.get_tensor_mode(name).name == "INPUT"
shape = self.engine.get_tensor_shape(name)
dtype = trt.nptype(self.engine.get_tensor_dtype(name))
binding = {
"index": idx,
"name": name,
"dtype": dtype,
"shape": list(shape)
}
if is_input:
self.inputs.append(binding)
else:
self.outputs.append(binding)
assert len(self.inputs) > 0
assert len(self.outputs) > 0
self.allocate_max_buffers()
def allocate_max_buffers(self, device="cuda"):
nvtx.range_push("allocate_max_buffers")
# 目前仅支持 batch 维度的动态处理
batch_size = 1
for idx in range(self.engine.num_io_tensors):
binding = self.engine[idx]
shape = self.engine.get_tensor_shape(binding)
is_input = self.engine.get_tensor_mode(binding).name == "INPUT"
if -1 in shape:
if is_input:
shape = self.engine.get_tensor_profile_shape(binding, 0)[-1]
batch_size = shape[0]
else:
shape[0] = batch_size
dtype = trt.nptype(self.engine.get_tensor_dtype(binding))
tensor = torch.empty(
tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]
).to(device=device)
self.tensors[binding] = tensor
nvtx.range_pop()
def input_spec(self):
"""
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
:return: Two items, the shape of the input tensor and its (numpy) datatype.
"""
specs = []
for i, o in enumerate(self.inputs):
specs.append((o["name"], o['shape'], o['dtype']))
if self.debug:
print(f"trt input {i} -> {o['name']} -> {o['shape']}")
return specs
def output_spec(self):
"""
Get the specs for the output tensors of the network. Useful to prepare memory allocations.
:return: A list with two items per element, the shape and (numpy) datatype of each output tensor.
"""
specs = []
for i, o in enumerate(self.outputs):
specs.append((o["name"], o['shape'], o['dtype']))
if self.debug:
print(f"trt output {i} -> {o['name']} -> {o['shape']}")
return specs
def adjust_buffer(self, feed_dict):
nvtx.range_push("adjust_buffer")
for name, buf in feed_dict.items():
input_tensor = self.tensors[name]
current_shape = list(buf.shape)
slices = tuple(slice(0, dim) for dim in current_shape)
input_tensor[slices].copy_(buf)
self.context.set_input_shape(name, current_shape)
nvtx.range_pop()
def predict(self, feed_dict, stream):
"""
Execute inference on a batch of images.
:param data: A list of inputs as numpy arrays.
:return A list of outputs as numpy arrays.
"""
nvtx.range_push("set_tensors")
self.adjust_buffer(feed_dict)
for name, tensor in self.tensors.items():
self.context.set_tensor_address(name, tensor.data_ptr())
nvtx.range_pop()
nvtx.range_push("execute")
noerror = self.context.execute_async_v3(stream)
if not noerror:
raise ValueError("ERROR: inference failed.")
nvtx.range_pop()
return self.tensors
def __del__(self):
del self.engine
del self.context
del self.inputs
del self.outputs
del self.tensors
class OnnxRuntimePredictor:
"""
OnnxRuntime Prediction
"""
def __init__(self, **kwargs):
model_path = kwargs.get("model_path", "") # 用模型路径区分是否是一样的实例
assert os.path.exists(model_path), "model path must exist!"
# print("loading ort model:{}".format(model_path))
self.debug = kwargs.get("debug", False)
providers = ['CUDAExecutionProvider', 'CoreMLExecutionProvider', 'CPUExecutionProvider']
print(f"OnnxRuntime use {providers}")
opts = onnxruntime.SessionOptions()
# opts.inter_op_num_threads = kwargs.get("num_threads", 4)
# opts.intra_op_num_threads = kwargs.get("num_threads", 4)
# opts.log_severity_level = 3
self.onnx_model = onnxruntime.InferenceSession(model_path, providers=providers, sess_options=opts)
self.inputs = self.onnx_model.get_inputs()
self.outputs = self.onnx_model.get_outputs()
def input_spec(self):
"""
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
:return: Two items, the shape of the input tensor and its (numpy) datatype.
"""
specs = []
for i, o in enumerate(self.inputs):
specs.append((o.name, o.shape, o.type))
if self.debug:
print(f"ort {i} -> {o.name} -> {o.shape}")
return specs
def output_spec(self):
"""
Get the specs for the output tensors of the network. Useful to prepare memory allocations.
:return: A list with two items per element, the shape and (numpy) datatype of each output tensor.
"""
specs = []
for i, o in enumerate(self.outputs):
specs.append((o.name, o.shape, o.type))
if self.debug:
print(f"ort output {i} -> {o.name} -> {o.shape}")
return specs
def predict(self, *data):
input_feeds = {}
for i in range(len(data)):
if self.inputs[i].type == 'tensor(float16)':
input_feeds[self.inputs[i].name] = data[i].astype(np.float16)
else:
input_feeds[self.inputs[i].name] = data[i].astype(np.float32)
results = self.onnx_model.run(None, input_feeds)
return results
def __del__(self):
del self.onnx_model
self.onnx_model = None
class OnnxRuntimePredictorSingleton(OnnxRuntimePredictor):
"""
单例模式,防止模型被加载多次
"""
_instance_lock = threading.Lock()
_instance = {}
def __new__(cls, *args, **kwargs):
model_path = kwargs.get("model_path", "") # 用模型路径区分是否是一样的实例
assert os.path.exists(model_path), "model path must exist!"
# 单例模式,避免重复加载模型
with OnnxRuntimePredictorSingleton._instance_lock:
if model_path not in OnnxRuntimePredictorSingleton._instance or \
OnnxRuntimePredictorSingleton._instance[model_path].onnx_model is None:
OnnxRuntimePredictorSingleton._instance[model_path] = OnnxRuntimePredictor(**kwargs)
return OnnxRuntimePredictorSingleton._instance[model_path]
def get_predictor(**kwargs):
predict_type = kwargs.get("predict_type", "trt")
if predict_type == "ort":
return OnnxRuntimePredictorSingleton(**kwargs)
elif predict_type == "trt":
return TensorRTPredictor(**kwargs)
else:
raise NotImplementedError