Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# @Author : wenshao | |
# @Email : [email protected] | |
# @Project : FasterLivePortrait | |
# @FileName: landmark_model.py | |
from .base_model import BaseModel | |
import cv2 | |
import numpy as np | |
from difpoint.src.utils.crop import crop_image, _transform_pts | |
import torch | |
from torch.cuda import nvtx | |
from .predictor import numpy_to_torch_dtype_dict | |
class LandmarkModel(BaseModel): | |
""" | |
landmark Model | |
""" | |
def __init__(self, **kwargs): | |
super(LandmarkModel, self).__init__(**kwargs) | |
self.dsize = 224 | |
def input_process(self, *data): | |
if len(data) > 1: | |
img_rgb, lmk = data | |
else: | |
img_rgb = data[0] | |
lmk = None | |
if lmk is not None: | |
crop_dct = crop_image(img_rgb, lmk, dsize=self.dsize, scale=1.5, vy_ratio=-0.1) | |
img_crop_rgb = crop_dct['img_crop'] | |
else: | |
# NOTE: force resize to 224x224, NOT RECOMMEND! | |
img_crop_rgb = cv2.resize(img_rgb, (self.dsize, self.dsize)) | |
scale = max(img_rgb.shape[:2]) / self.dsize | |
crop_dct = { | |
'M_c2o': np.array([ | |
[scale, 0., 0.], | |
[0., scale, 0.], | |
[0., 0., 1.], | |
], dtype=np.float32), | |
} | |
inp = (img_crop_rgb.astype(np.float32) / 255.).transpose(2, 0, 1)[None, ...] # HxWx3 (BGR) -> 1x3xHxW (RGB!) | |
return inp, crop_dct | |
def output_process(self, *data): | |
out_pts, crop_dct = data | |
lmk = out_pts[2].reshape(-1, 2) * self.dsize # scale to 0-224 | |
lmk = _transform_pts(lmk, M=crop_dct['M_c2o']) | |
return lmk | |
def predict_trt(self, *data): | |
nvtx.range_push("forward") | |
feed_dict = {} | |
for i, inp in enumerate(self.predictor.inputs): | |
if isinstance(data[i], torch.Tensor): | |
feed_dict[inp['name']] = data[i] | |
else: | |
feed_dict[inp['name']] = torch.from_numpy(data[i]).to(device=self.device, | |
dtype=numpy_to_torch_dtype_dict[inp['dtype']]) | |
preds_dict = self.predictor.predict(feed_dict, self.cudaStream) | |
outs = [] | |
for i, out in enumerate(self.predictor.outputs): | |
outs.append(preds_dict[out["name"]].cpu().numpy()) | |
nvtx.range_pop() | |
return outs | |
def predict(self, *data): | |
input, crop_dct = self.input_process(*data) | |
if self.predict_type == "trt": | |
preds = self.predict_trt(input) | |
else: | |
preds = self.predictor.predict(input) | |
outputs = self.output_process(preds, crop_dct) | |
return outputs | |