Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# @Author : wenshao | |
# @Email : [email protected] | |
# @Project : FasterLivePortrait | |
# @FileName: face_analysis_model.py | |
import pdb | |
import numpy as np | |
from insightface.app.common import Face | |
import cv2 | |
from .predictor import get_predictor | |
from ..utils import face_align | |
import torch | |
from torch.cuda import nvtx | |
from .predictor import numpy_to_torch_dtype_dict | |
def sort_by_direction(faces, direction: str = 'large-small', face_center=None): | |
if len(faces) <= 0: | |
return faces | |
if direction == 'left-right': | |
return sorted(faces, key=lambda face: face['bbox'][0]) | |
if direction == 'right-left': | |
return sorted(faces, key=lambda face: face['bbox'][0], reverse=True) | |
if direction == 'top-bottom': | |
return sorted(faces, key=lambda face: face['bbox'][1]) | |
if direction == 'bottom-top': | |
return sorted(faces, key=lambda face: face['bbox'][1], reverse=True) | |
if direction == 'small-large': | |
return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1])) | |
if direction == 'large-small': | |
return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]), | |
reverse=True) | |
if direction == 'distance-from-retarget-face': | |
return sorted(faces, key=lambda face: (((face['bbox'][2] + face['bbox'][0]) / 2 - face_center[0]) ** 2 + ( | |
(face['bbox'][3] + face['bbox'][1]) / 2 - face_center[1]) ** 2) ** 0.5) | |
return faces | |
def distance2bbox(points, distance, max_shape=None): | |
"""Decode distance prediction to bounding box. | |
Args: | |
points (Tensor): Shape (n, 2), [x, y]. | |
distance (Tensor): Distance from the given point to 4 | |
boundaries (left, top, right, bottom). | |
max_shape (tuple): Shape of the image. | |
Returns: | |
Tensor: Decoded bboxes. | |
""" | |
x1 = points[:, 0] - distance[:, 0] | |
y1 = points[:, 1] - distance[:, 1] | |
x2 = points[:, 0] + distance[:, 2] | |
y2 = points[:, 1] + distance[:, 3] | |
if max_shape is not None: | |
x1 = x1.clamp(min=0, max=max_shape[1]) | |
y1 = y1.clamp(min=0, max=max_shape[0]) | |
x2 = x2.clamp(min=0, max=max_shape[1]) | |
y2 = y2.clamp(min=0, max=max_shape[0]) | |
return np.stack([x1, y1, x2, y2], axis=-1) | |
def distance2kps(points, distance, max_shape=None): | |
"""Decode distance prediction to bounding box. | |
Args: | |
points (Tensor): Shape (n, 2), [x, y]. | |
distance (Tensor): Distance from the given point to 4 | |
boundaries (left, top, right, bottom). | |
max_shape (tuple): Shape of the image. | |
Returns: | |
Tensor: Decoded bboxes. | |
""" | |
preds = [] | |
for i in range(0, distance.shape[1], 2): | |
px = points[:, i % 2] + distance[:, i] | |
py = points[:, i % 2 + 1] + distance[:, i + 1] | |
if max_shape is not None: | |
px = px.clamp(min=0, max=max_shape[1]) | |
py = py.clamp(min=0, max=max_shape[0]) | |
preds.append(px) | |
preds.append(py) | |
return np.stack(preds, axis=-1) | |
class FaceAnalysisModel: | |
def __init__(self, **kwargs): | |
self.model_paths = kwargs.get("model_path", []) | |
self.predict_type = kwargs.get("predict_type", "trt") | |
self.device = torch.cuda.current_device() | |
self.cudaStream = torch.cuda.current_stream().cuda_stream | |
assert self.model_paths | |
self.face_det = get_predictor(predict_type=self.predict_type, model_path=self.model_paths[0]) | |
self.face_det.input_spec() | |
self.face_det.output_spec() | |
self.face_pose = get_predictor(predict_type=self.predict_type, model_path=self.model_paths[1]) | |
self.face_pose.input_spec() | |
self.face_pose.output_spec() | |
# face det | |
self.input_mean = 127.5 | |
self.input_std = 128.0 | |
# print(self.output_names) | |
# assert len(outputs)==10 or len(outputs)==15 | |
self.use_kps = False | |
self._anchor_ratio = 1.0 | |
self._num_anchors = 1 | |
self.center_cache = {} | |
self.nms_thresh = 0.4 | |
self.det_thresh = 0.5 | |
self.input_size = (512, 512) | |
if len(self.face_det.outputs) == 6: | |
self.fmc = 3 | |
self._feat_stride_fpn = [8, 16, 32] | |
self._num_anchors = 2 | |
elif len(self.face_det.outputs) == 9: | |
self.fmc = 3 | |
self._feat_stride_fpn = [8, 16, 32] | |
self._num_anchors = 2 | |
self.use_kps = True | |
elif len(self.face_det.outputs) == 10: | |
self.fmc = 5 | |
self._feat_stride_fpn = [8, 16, 32, 64, 128] | |
self._num_anchors = 1 | |
elif len(self.face_det.outputs) == 15: | |
self.fmc = 5 | |
self._feat_stride_fpn = [8, 16, 32, 64, 128] | |
self._num_anchors = 1 | |
self.use_kps = True | |
self.lmk_dim = 2 | |
self.lmk_num = 212 // self.lmk_dim | |
def nms(self, dets): | |
thresh = self.nms_thresh | |
x1 = dets[:, 0] | |
y1 = dets[:, 1] | |
x2 = dets[:, 2] | |
y2 = dets[:, 3] | |
scores = dets[:, 4] | |
areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
order = scores.argsort()[::-1] | |
keep = [] | |
while order.size > 0: | |
i = order[0] | |
keep.append(i) | |
xx1 = np.maximum(x1[i], x1[order[1:]]) | |
yy1 = np.maximum(y1[i], y1[order[1:]]) | |
xx2 = np.minimum(x2[i], x2[order[1:]]) | |
yy2 = np.minimum(y2[i], y2[order[1:]]) | |
w = np.maximum(0.0, xx2 - xx1 + 1) | |
h = np.maximum(0.0, yy2 - yy1 + 1) | |
inter = w * h | |
ovr = inter / (areas[i] + areas[order[1:]] - inter) | |
inds = np.where(ovr <= thresh)[0] | |
order = order[inds + 1] | |
return keep | |
def detect_face(self, *data): | |
img = data[0] # BGR mode | |
im_ratio = float(img.shape[0]) / img.shape[1] | |
input_size = self.input_size | |
model_ratio = float(input_size[1]) / input_size[0] | |
if im_ratio > model_ratio: | |
new_height = input_size[1] | |
new_width = int(new_height / im_ratio) | |
else: | |
new_width = input_size[0] | |
new_height = int(new_width * im_ratio) | |
det_scale = float(new_height) / img.shape[0] | |
resized_img = cv2.resize(img, (new_width, new_height)) | |
det_img = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8) | |
det_img[:new_height, :new_width, :] = resized_img | |
scores_list = [] | |
bboxes_list = [] | |
kpss_list = [] | |
input_size = tuple(img.shape[0:2][::-1]) | |
det_img = cv2.cvtColor(det_img, cv2.COLOR_BGR2RGB) | |
det_img = np.transpose(det_img, (2, 0, 1)) | |
det_img = (det_img - self.input_mean) / self.input_std | |
if self.predict_type == "trt": | |
nvtx.range_push("forward") | |
feed_dict = {} | |
inp = self.face_det.inputs[0] | |
det_img_torch = torch.from_numpy(det_img[None]).to(device=self.device, | |
dtype=numpy_to_torch_dtype_dict[inp['dtype']]) | |
feed_dict[inp['name']] = det_img_torch | |
preds_dict = self.face_det.predict(feed_dict, self.cudaStream) | |
outs = [] | |
for key in ["448", "471", "494", "451", "474", "497", "454", "477", "500"]: | |
outs.append(preds_dict[key].cpu().numpy()) | |
o448, o471, o494, o451, o474, o497, o454, o477, o500 = outs | |
nvtx.range_pop() | |
else: | |
o448, o471, o494, o451, o474, o497, o454, o477, o500 = self.face_det.predict(det_img[None]) | |
faces_det = [o448, o471, o494, o451, o474, o497, o454, o477, o500] | |
input_height = det_img.shape[1] | |
input_width = det_img.shape[2] | |
fmc = self.fmc | |
for idx, stride in enumerate(self._feat_stride_fpn): | |
scores = faces_det[idx] | |
bbox_preds = faces_det[idx + fmc] | |
bbox_preds = bbox_preds * stride | |
if self.use_kps: | |
kps_preds = faces_det[idx + fmc * 2] * stride | |
height = input_height // stride | |
width = input_width // stride | |
K = height * width | |
key = (height, width, stride) | |
if key in self.center_cache: | |
anchor_centers = self.center_cache[key] | |
else: | |
# solution-3: | |
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) | |
# print(anchor_centers.shape) | |
anchor_centers = (anchor_centers * stride).reshape((-1, 2)) | |
if self._num_anchors > 1: | |
anchor_centers = np.stack([anchor_centers] * self._num_anchors, axis=1).reshape((-1, 2)) | |
if len(self.center_cache) < 100: | |
self.center_cache[key] = anchor_centers | |
pos_inds = np.where(scores >= self.det_thresh)[0] | |
bboxes = distance2bbox(anchor_centers, bbox_preds) | |
pos_scores = scores[pos_inds] | |
pos_bboxes = bboxes[pos_inds] | |
scores_list.append(pos_scores) | |
bboxes_list.append(pos_bboxes) | |
if self.use_kps: | |
kpss = distance2kps(anchor_centers, kps_preds) | |
# kpss = kps_preds | |
kpss = kpss.reshape((kpss.shape[0], -1, 2)) | |
pos_kpss = kpss[pos_inds] | |
kpss_list.append(pos_kpss) | |
scores = np.vstack(scores_list) | |
scores_ravel = scores.ravel() | |
order = scores_ravel.argsort()[::-1] | |
bboxes = np.vstack(bboxes_list) / det_scale | |
if self.use_kps: | |
kpss = np.vstack(kpss_list) / det_scale | |
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False) | |
pre_det = pre_det[order, :] | |
keep = self.nms(pre_det) | |
det = pre_det[keep, :] | |
if self.use_kps: | |
kpss = kpss[order, :, :] | |
kpss = kpss[keep, :, :] | |
else: | |
kpss = None | |
return det, kpss | |
def estimate_face_pose(self, *data): | |
""" | |
检测脸部关键点 | |
:param data: | |
:return: | |
""" | |
img, face = data | |
bbox = face.bbox | |
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) | |
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 | |
rotate = 0 | |
input_size = (192, 192) | |
_scale = input_size[0] / (max(w, h) * 1.5) | |
aimg, M = face_align.transform(img, center, input_size[0], _scale, rotate) | |
input_size = tuple(aimg.shape[0:2][::-1]) | |
aimg = cv2.cvtColor(aimg, cv2.COLOR_BGR2RGB) | |
aimg = np.transpose(aimg, (2, 0, 1)) | |
if self.predict_type == "trt": | |
nvtx.range_push("forward") | |
feed_dict = {} | |
inp = self.face_pose.inputs[0] | |
det_img_torch = torch.from_numpy(aimg[None]).to(device=self.device, | |
dtype=numpy_to_torch_dtype_dict[inp['dtype']]) | |
feed_dict[inp['name']] = det_img_torch | |
preds_dict = self.face_pose.predict(feed_dict, self.cudaStream) | |
outs = [] | |
for i, out in enumerate(self.face_pose.outputs): | |
outs.append(preds_dict[out["name"]].cpu().numpy()) | |
pred = outs[0] | |
nvtx.range_pop() | |
else: | |
pred = self.face_pose.predict(aimg[None])[0] | |
pred = pred.reshape((-1, 2)) | |
if self.lmk_num < pred.shape[0]: | |
pred = pred[self.lmk_num * -1:, :] | |
pred[:, 0:2] += 1 | |
pred[:, 0:2] *= (input_size[0] // 2) | |
if pred.shape[1] == 3: | |
pred[:, 2] *= (input_size[0] // 2) | |
IM = cv2.invertAffineTransform(M) | |
pred = face_align.trans_points(pred, IM) | |
face["landmark"] = pred | |
return pred | |
def predict(self, *data, **kwargs): | |
bboxes, kpss = self.detect_face(*data) | |
if bboxes.shape[0] == 0: | |
return [] | |
ret = [] | |
for i in range(bboxes.shape[0]): | |
bbox = bboxes[i, 0:4] | |
det_score = bboxes[i, 4] | |
kps = kpss[i] | |
face = Face(bbox=bbox, kps=kps, det_score=det_score) | |
self.estimate_face_pose(data[0], face) | |
ret.append(face) | |
ret = sort_by_direction(ret, 'large-small', None) | |
outs = [x.landmark for x in ret] | |
return outs | |
def __del__(self): | |
del self.face_det | |
del self.face_pose | |