KDTalker / difpoint /src /models /face_analysis_model.py
ChaolongYang's picture
Upload 242 files
475d332 verified
# -*- coding: utf-8 -*-
# @Author : wenshao
# @Email : [email protected]
# @Project : FasterLivePortrait
# @FileName: face_analysis_model.py
import pdb
import numpy as np
from insightface.app.common import Face
import cv2
from .predictor import get_predictor
from ..utils import face_align
import torch
from torch.cuda import nvtx
from .predictor import numpy_to_torch_dtype_dict
def sort_by_direction(faces, direction: str = 'large-small', face_center=None):
if len(faces) <= 0:
return faces
if direction == 'left-right':
return sorted(faces, key=lambda face: face['bbox'][0])
if direction == 'right-left':
return sorted(faces, key=lambda face: face['bbox'][0], reverse=True)
if direction == 'top-bottom':
return sorted(faces, key=lambda face: face['bbox'][1])
if direction == 'bottom-top':
return sorted(faces, key=lambda face: face['bbox'][1], reverse=True)
if direction == 'small-large':
return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]))
if direction == 'large-small':
return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]),
reverse=True)
if direction == 'distance-from-retarget-face':
return sorted(faces, key=lambda face: (((face['bbox'][2] + face['bbox'][0]) / 2 - face_center[0]) ** 2 + (
(face['bbox'][3] + face['bbox'][1]) / 2 - face_center[1]) ** 2) ** 0.5)
return faces
def distance2bbox(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (n, 2), [x, y].
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom).
max_shape (tuple): Shape of the image.
Returns:
Tensor: Decoded bboxes.
"""
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
if max_shape is not None:
x1 = x1.clamp(min=0, max=max_shape[1])
y1 = y1.clamp(min=0, max=max_shape[0])
x2 = x2.clamp(min=0, max=max_shape[1])
y2 = y2.clamp(min=0, max=max_shape[0])
return np.stack([x1, y1, x2, y2], axis=-1)
def distance2kps(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (n, 2), [x, y].
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom).
max_shape (tuple): Shape of the image.
Returns:
Tensor: Decoded bboxes.
"""
preds = []
for i in range(0, distance.shape[1], 2):
px = points[:, i % 2] + distance[:, i]
py = points[:, i % 2 + 1] + distance[:, i + 1]
if max_shape is not None:
px = px.clamp(min=0, max=max_shape[1])
py = py.clamp(min=0, max=max_shape[0])
preds.append(px)
preds.append(py)
return np.stack(preds, axis=-1)
class FaceAnalysisModel:
def __init__(self, **kwargs):
self.model_paths = kwargs.get("model_path", [])
self.predict_type = kwargs.get("predict_type", "trt")
self.device = torch.cuda.current_device()
self.cudaStream = torch.cuda.current_stream().cuda_stream
assert self.model_paths
self.face_det = get_predictor(predict_type=self.predict_type, model_path=self.model_paths[0])
self.face_det.input_spec()
self.face_det.output_spec()
self.face_pose = get_predictor(predict_type=self.predict_type, model_path=self.model_paths[1])
self.face_pose.input_spec()
self.face_pose.output_spec()
# face det
self.input_mean = 127.5
self.input_std = 128.0
# print(self.output_names)
# assert len(outputs)==10 or len(outputs)==15
self.use_kps = False
self._anchor_ratio = 1.0
self._num_anchors = 1
self.center_cache = {}
self.nms_thresh = 0.4
self.det_thresh = 0.5
self.input_size = (512, 512)
if len(self.face_det.outputs) == 6:
self.fmc = 3
self._feat_stride_fpn = [8, 16, 32]
self._num_anchors = 2
elif len(self.face_det.outputs) == 9:
self.fmc = 3
self._feat_stride_fpn = [8, 16, 32]
self._num_anchors = 2
self.use_kps = True
elif len(self.face_det.outputs) == 10:
self.fmc = 5
self._feat_stride_fpn = [8, 16, 32, 64, 128]
self._num_anchors = 1
elif len(self.face_det.outputs) == 15:
self.fmc = 5
self._feat_stride_fpn = [8, 16, 32, 64, 128]
self._num_anchors = 1
self.use_kps = True
self.lmk_dim = 2
self.lmk_num = 212 // self.lmk_dim
def nms(self, dets):
thresh = self.nms_thresh
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def detect_face(self, *data):
img = data[0] # BGR mode
im_ratio = float(img.shape[0]) / img.shape[1]
input_size = self.input_size
model_ratio = float(input_size[1]) / input_size[0]
if im_ratio > model_ratio:
new_height = input_size[1]
new_width = int(new_height / im_ratio)
else:
new_width = input_size[0]
new_height = int(new_width * im_ratio)
det_scale = float(new_height) / img.shape[0]
resized_img = cv2.resize(img, (new_width, new_height))
det_img = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8)
det_img[:new_height, :new_width, :] = resized_img
scores_list = []
bboxes_list = []
kpss_list = []
input_size = tuple(img.shape[0:2][::-1])
det_img = cv2.cvtColor(det_img, cv2.COLOR_BGR2RGB)
det_img = np.transpose(det_img, (2, 0, 1))
det_img = (det_img - self.input_mean) / self.input_std
if self.predict_type == "trt":
nvtx.range_push("forward")
feed_dict = {}
inp = self.face_det.inputs[0]
det_img_torch = torch.from_numpy(det_img[None]).to(device=self.device,
dtype=numpy_to_torch_dtype_dict[inp['dtype']])
feed_dict[inp['name']] = det_img_torch
preds_dict = self.face_det.predict(feed_dict, self.cudaStream)
outs = []
for key in ["448", "471", "494", "451", "474", "497", "454", "477", "500"]:
outs.append(preds_dict[key].cpu().numpy())
o448, o471, o494, o451, o474, o497, o454, o477, o500 = outs
nvtx.range_pop()
else:
o448, o471, o494, o451, o474, o497, o454, o477, o500 = self.face_det.predict(det_img[None])
faces_det = [o448, o471, o494, o451, o474, o497, o454, o477, o500]
input_height = det_img.shape[1]
input_width = det_img.shape[2]
fmc = self.fmc
for idx, stride in enumerate(self._feat_stride_fpn):
scores = faces_det[idx]
bbox_preds = faces_det[idx + fmc]
bbox_preds = bbox_preds * stride
if self.use_kps:
kps_preds = faces_det[idx + fmc * 2] * stride
height = input_height // stride
width = input_width // stride
K = height * width
key = (height, width, stride)
if key in self.center_cache:
anchor_centers = self.center_cache[key]
else:
# solution-3:
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
# print(anchor_centers.shape)
anchor_centers = (anchor_centers * stride).reshape((-1, 2))
if self._num_anchors > 1:
anchor_centers = np.stack([anchor_centers] * self._num_anchors, axis=1).reshape((-1, 2))
if len(self.center_cache) < 100:
self.center_cache[key] = anchor_centers
pos_inds = np.where(scores >= self.det_thresh)[0]
bboxes = distance2bbox(anchor_centers, bbox_preds)
pos_scores = scores[pos_inds]
pos_bboxes = bboxes[pos_inds]
scores_list.append(pos_scores)
bboxes_list.append(pos_bboxes)
if self.use_kps:
kpss = distance2kps(anchor_centers, kps_preds)
# kpss = kps_preds
kpss = kpss.reshape((kpss.shape[0], -1, 2))
pos_kpss = kpss[pos_inds]
kpss_list.append(pos_kpss)
scores = np.vstack(scores_list)
scores_ravel = scores.ravel()
order = scores_ravel.argsort()[::-1]
bboxes = np.vstack(bboxes_list) / det_scale
if self.use_kps:
kpss = np.vstack(kpss_list) / det_scale
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
pre_det = pre_det[order, :]
keep = self.nms(pre_det)
det = pre_det[keep, :]
if self.use_kps:
kpss = kpss[order, :, :]
kpss = kpss[keep, :, :]
else:
kpss = None
return det, kpss
def estimate_face_pose(self, *data):
"""
检测脸部关键点
:param data:
:return:
"""
img, face = data
bbox = face.bbox
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
rotate = 0
input_size = (192, 192)
_scale = input_size[0] / (max(w, h) * 1.5)
aimg, M = face_align.transform(img, center, input_size[0], _scale, rotate)
input_size = tuple(aimg.shape[0:2][::-1])
aimg = cv2.cvtColor(aimg, cv2.COLOR_BGR2RGB)
aimg = np.transpose(aimg, (2, 0, 1))
if self.predict_type == "trt":
nvtx.range_push("forward")
feed_dict = {}
inp = self.face_pose.inputs[0]
det_img_torch = torch.from_numpy(aimg[None]).to(device=self.device,
dtype=numpy_to_torch_dtype_dict[inp['dtype']])
feed_dict[inp['name']] = det_img_torch
preds_dict = self.face_pose.predict(feed_dict, self.cudaStream)
outs = []
for i, out in enumerate(self.face_pose.outputs):
outs.append(preds_dict[out["name"]].cpu().numpy())
pred = outs[0]
nvtx.range_pop()
else:
pred = self.face_pose.predict(aimg[None])[0]
pred = pred.reshape((-1, 2))
if self.lmk_num < pred.shape[0]:
pred = pred[self.lmk_num * -1:, :]
pred[:, 0:2] += 1
pred[:, 0:2] *= (input_size[0] // 2)
if pred.shape[1] == 3:
pred[:, 2] *= (input_size[0] // 2)
IM = cv2.invertAffineTransform(M)
pred = face_align.trans_points(pred, IM)
face["landmark"] = pred
return pred
def predict(self, *data, **kwargs):
bboxes, kpss = self.detect_face(*data)
if bboxes.shape[0] == 0:
return []
ret = []
for i in range(bboxes.shape[0]):
bbox = bboxes[i, 0:4]
det_score = bboxes[i, 4]
kps = kpss[i]
face = Face(bbox=bbox, kps=kps, det_score=det_score)
self.estimate_face_pose(data[0], face)
ret.append(face)
ret = sort_by_direction(ret, 'large-small', None)
outs = [x.landmark for x in ret]
return outs
def __del__(self):
del self.face_det
del self.face_pose