KDTalker / app.py
ChaolongYang's picture
Update app.py
af9e4bd verified
import os, sys
import gradio as gr
from difpoint.inference import Inferencer
from TTS.api import TTS
import torch
import time
from flask import send_from_directory
from huggingface_hub import snapshot_download
import spaces
import tensorrt
import multiprocessing as mp
import pickle
mp.set_start_method('spawn', force=True)
repo_id = "ChaolongYang/KDTalker"
local_dir = "./downloaded_repo"
snapshot_download(repo_id=repo_id, local_dir=local_dir)
print("\nFiles downloaded:")
for root, dirs, files in os.walk(local_dir):
for file in files:
file_path = os.path.join(root, file)
print(file_path)
result_dir = "results"
def set_upload():
return "upload"
def set_microphone():
return "microphone"
def set_tts():
return "tts"
def create_kd_talker():
return Inferencer()
example_folder = "example"
example_choices = ["Example 1", "Example 2", "Example 3"]
example_mapping = {
"Example 1": {"audio": os.path.join(example_folder, "example1.wav"), "image": os.path.join(example_folder, "example1.png")},
"Example 2": {"audio": os.path.join(example_folder, "example2.wav"), "image": os.path.join(example_folder, "example2.png")},
"Example 3": {"audio": os.path.join(example_folder, "example3.wav"), "image": os.path.join(example_folder, "example3.png")},
}
@spaces.GPU
def predict(prompt, upload_reference_audio, microphone_reference_audio, reference_audio_type):
global result_dir
output_file_path = os.path.join('./downloaded_repo/', 'output.wav')
if reference_audio_type == 'upload':
audio_file_pth = upload_reference_audio
elif reference_audio_type == 'microphone':
audio_file_pth = microphone_reference_audio
tts = TTS('tts_models/multilingual/multi-dataset/your_tts')
tts.tts_to_file(
text=prompt,
file_path=output_file_path,
speaker_wav=audio_file_pth,
language="en",
)
return gr.Audio(value=output_file_path, type='filepath')
@spaces.GPU
def generate(upload_driven_audio, tts_driven_audio, driven_audio_type, source_image, smoothed_pitch, smoothed_yaw, smoothed_roll, smoothed_t):
return Inferencer().generate_with_audio_img(upload_driven_audio, tts_driven_audio, driven_audio_type, source_image,
smoothed_pitch, smoothed_yaw, smoothed_roll, smoothed_t)
def main():
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
with gr.Blocks(analytics_enabled=False) as interface:
with gr.Row():
gr.HTML(
"""
<div align='center'>
<h2> Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait </h2>
<div style="display: flex; justify-content: center; align-items: center; gap: 20px;">
<img src='https://newstatic.dukekunshan.edu.cn/mainsite/2021/08/07161629/large_dku-Logo-e1649298929570.png' alt='Logo' width='150'/>
<img src='https://www.xjtlu.edu.cn/wp-content/uploads/2023/12/7c52fd62e9cf26cb493faa7f91c2782.png' width='250'/>
</div>
</div>
"""
)
driven_audio_type = gr.Textbox(value="upload", visible=False)
reference_audio_type = gr.Textbox(value="upload", visible=False)
with gr.Row():
with gr.Column(variant="panel"):
with gr.Tabs(elem_id="kdtalker_source_image"):
with gr.TabItem("Upload image"):
source_image = gr.Image(label="Source image", sources="upload", type="filepath", scale=256)
with gr.Tabs(elem_id="kdtalker_driven_audio"):
with gr.TabItem("Upload"):
upload_driven_audio = gr.Audio(label="Upload audio", sources="upload", type="filepath")
upload_driven_audio.change(set_upload, outputs=driven_audio_type)
with gr.TabItem("TTS"):
upload_reference_audio = gr.Audio(label="Upload Reference Audio", sources="upload", type="filepath")
upload_reference_audio.change(set_upload, outputs=reference_audio_type)
microphone_reference_audio = gr.Audio(label="Recorded Reference Audio", sources="microphone", type="filepath")
microphone_reference_audio.change(set_microphone, outputs=reference_audio_type)
input_text = gr.Textbox(
label="Generating audio from text",
lines=5,
placeholder="please enter some text here, we generate the audio from text using @Coqui.ai TTS."
)
tts_button = gr.Button("Generate audio", elem_id="kdtalker_audio_generate", variant="primary")
tts_driven_audio = gr.Audio(label="Synthesised Audio", type="filepath")
tts_button.click(fn=predict, inputs=[input_text, upload_reference_audio, microphone_reference_audio, reference_audio_type], outputs=[tts_driven_audio])
tts_button.click(set_tts, outputs=driven_audio_type)
with gr.Column(variant="panel"):
gen_video = gr.Video(label="Generated video", format="mp4", width=256)
with gr.Tabs(elem_id="talker_checkbox"):
with gr.TabItem("KDTalker"):
smoothed_pitch = gr.Slider(minimum=0, maximum=1, step=0.1, label="Pitch", value=0.8)
smoothed_yaw = gr.Slider(minimum=0, maximum=1, step=0.1, label="Yaw", value=0.8)
smoothed_roll = gr.Slider(minimum=0, maximum=1, step=0.1, label="Roll", value=0.8)
smoothed_t = gr.Slider(minimum=0, maximum=1, step=0.1, label="T", value=0.8)
kd_submit = gr.Button("Generate", elem_id="kdtalker_generate", variant="primary")
kd_submit.click(
fn=generate,
inputs=[
upload_driven_audio, tts_driven_audio, driven_audio_type, source_image,
smoothed_pitch, smoothed_yaw, smoothed_roll, smoothed_t
],
outputs=[gen_video]
)
with gr.TabItem("Example"):
example_choice = gr.Dropdown(choices=example_choices, label="Choose an example")
def load_example(choice):
example = example_mapping.get(choice, {})
audio_path = example.get("audio", "")
image_path = example.get("image", "")
return [audio_path, image_path]
example_choice.change(
fn=load_example,
inputs=[example_choice],
outputs=[upload_driven_audio, source_image]
)
example_choice.change(set_upload, outputs=driven_audio_type)
return interface
demo = main()
demo.queue().launch(share=True)