File size: 7,343 Bytes
475d332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af9e4bd
 
 
 
 
 
 
 
475d332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af9e4bd
 
 
 
 
 
 
 
 
475d332
af9e4bd
 
 
 
475d332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af9e4bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475d332
 
 
 
af9e4bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os, sys
import gradio as gr
from difpoint.inference import Inferencer
from TTS.api import TTS
import torch
import time
from flask import send_from_directory
from huggingface_hub import snapshot_download
import spaces
import tensorrt
import multiprocessing as mp
import pickle
mp.set_start_method('spawn', force=True)  


repo_id = "ChaolongYang/KDTalker"
local_dir = "./downloaded_repo"  
snapshot_download(repo_id=repo_id, local_dir=local_dir)
print("\nFiles downloaded:")
for root, dirs, files in os.walk(local_dir):
    for file in files:
        file_path = os.path.join(root, file)
        print(file_path)

result_dir = "results"
def set_upload():
    return "upload"
def set_microphone():
    return "microphone"
def set_tts():
    return "tts"
def create_kd_talker():
    return Inferencer() 

example_folder = "example"
example_choices = ["Example 1", "Example 2", "Example 3"]
example_mapping = {
    "Example 1": {"audio": os.path.join(example_folder, "example1.wav"), "image": os.path.join(example_folder, "example1.png")},
    "Example 2": {"audio": os.path.join(example_folder, "example2.wav"), "image": os.path.join(example_folder, "example2.png")},
    "Example 3": {"audio": os.path.join(example_folder, "example3.wav"), "image": os.path.join(example_folder, "example3.png")},
}

@spaces.GPU
def predict(prompt, upload_reference_audio, microphone_reference_audio, reference_audio_type):
    global result_dir
    output_file_path = os.path.join('./downloaded_repo/', 'output.wav')
    if reference_audio_type == 'upload':
        audio_file_pth = upload_reference_audio
    elif reference_audio_type == 'microphone':
        audio_file_pth =  microphone_reference_audio
    tts = TTS('tts_models/multilingual/multi-dataset/your_tts')
    tts.tts_to_file(
        text=prompt,
        file_path=output_file_path,
        speaker_wav=audio_file_pth,
        language="en",
    )
    return gr.Audio(value=output_file_path, type='filepath')

@spaces.GPU
def generate(upload_driven_audio, tts_driven_audio, driven_audio_type, source_image, smoothed_pitch, smoothed_yaw, smoothed_roll, smoothed_t):
    return Inferencer().generate_with_audio_img(upload_driven_audio, tts_driven_audio, driven_audio_type, source_image,
                                    smoothed_pitch, smoothed_yaw, smoothed_roll, smoothed_t)


def main():
    if torch.cuda.is_available():
        device = "cuda" 
    else:
        device = "cpu"
    with gr.Blocks(analytics_enabled=False) as interface:
        with gr.Row():
            gr.HTML(
            """
                <div align='center'>
                    <h2> Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait </h2>
                    <div style="display: flex; justify-content: center; align-items: center; gap: 20px;">
                        <img src='https://newstatic.dukekunshan.edu.cn/mainsite/2021/08/07161629/large_dku-Logo-e1649298929570.png' alt='Logo' width='150'/>
                        <img src='https://www.xjtlu.edu.cn/wp-content/uploads/2023/12/7c52fd62e9cf26cb493faa7f91c2782.png' width='250'/>
                    </div>
                </div>
            """
            )
            driven_audio_type = gr.Textbox(value="upload", visible=False) 
            reference_audio_type = gr.Textbox(value="upload", visible=False)
        with gr.Row():
            with gr.Column(variant="panel"):
                with gr.Tabs(elem_id="kdtalker_source_image"):
                    with gr.TabItem("Upload image"):
                        source_image = gr.Image(label="Source image", sources="upload", type="filepath", scale=256)
                with gr.Tabs(elem_id="kdtalker_driven_audio"):
                    with gr.TabItem("Upload"):
                        upload_driven_audio = gr.Audio(label="Upload audio", sources="upload", type="filepath")
                        upload_driven_audio.change(set_upload, outputs=driven_audio_type)
                    with gr.TabItem("TTS"):
                        upload_reference_audio = gr.Audio(label="Upload Reference Audio", sources="upload", type="filepath")
                        upload_reference_audio.change(set_upload, outputs=reference_audio_type)
                        microphone_reference_audio = gr.Audio(label="Recorded Reference Audio", sources="microphone", type="filepath")
                        microphone_reference_audio.change(set_microphone, outputs=reference_audio_type)
                        input_text = gr.Textbox(
                            label="Generating audio from text",
                            lines=5,
                            placeholder="please enter some text here, we generate the audio from text using @Coqui.ai TTS."
                        )
                        tts_button = gr.Button("Generate audio", elem_id="kdtalker_audio_generate", variant="primary")
                        tts_driven_audio = gr.Audio(label="Synthesised Audio", type="filepath")
                        tts_button.click(fn=predict, inputs=[input_text, upload_reference_audio, microphone_reference_audio, reference_audio_type], outputs=[tts_driven_audio])
                        tts_button.click(set_tts, outputs=driven_audio_type)
            with gr.Column(variant="panel"):
                gen_video = gr.Video(label="Generated video", format="mp4", width=256)
                with gr.Tabs(elem_id="talker_checkbox"):
                    with gr.TabItem("KDTalker"):
                        smoothed_pitch = gr.Slider(minimum=0, maximum=1, step=0.1, label="Pitch", value=0.8)
                        smoothed_yaw = gr.Slider(minimum=0, maximum=1, step=0.1, label="Yaw", value=0.8)
                        smoothed_roll = gr.Slider(minimum=0, maximum=1, step=0.1, label="Roll", value=0.8)
                        smoothed_t = gr.Slider(minimum=0, maximum=1, step=0.1, label="T", value=0.8)
                        kd_submit = gr.Button("Generate", elem_id="kdtalker_generate", variant="primary")
                        kd_submit.click(
                                fn=generate,
                                inputs=[
                                    upload_driven_audio, tts_driven_audio, driven_audio_type, source_image,
                                    smoothed_pitch, smoothed_yaw, smoothed_roll, smoothed_t
                                ],
                                outputs=[gen_video]
                            )
                    with gr.TabItem("Example"):
                        example_choice = gr.Dropdown(choices=example_choices, label="Choose an example")
                        def load_example(choice):
                            example = example_mapping.get(choice, {})
                            audio_path = example.get("audio", "")
                            image_path = example.get("image", "")
                            return [audio_path, image_path]
                        example_choice.change(
                            fn=load_example, 
                            inputs=[example_choice], 
                            outputs=[upload_driven_audio, source_image]
                        )
                        example_choice.change(set_upload, outputs=driven_audio_type)


    return interface


demo = main()
demo.queue().launch(share=True)