Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,819 Bytes
475d332 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# -*- coding: utf-8 -*-
import pdb
import cv2
import numpy as np
import ffmpeg
import os
import os.path as osp
def video_has_audio(video_file):
try:
ret = ffmpeg.probe(video_file, select_streams='a')
return len(ret["streams"]) > 0
except ffmpeg.Error:
return False
def get_video_info(video_path):
# 使用 ffmpeg.probe 获取视频信息
probe = ffmpeg.probe(video_path)
video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
if not video_streams:
raise ValueError("No video stream found")
# 获取视频时长
duration = float(probe['format']['duration'])
# 获取帧率 (r_frame_rate),通常是一个分数字符串,如 "30000/1001"
fps_string = video_streams[0]['r_frame_rate']
numerator, denominator = map(int, fps_string.split('/'))
fps = numerator / denominator
return duration, fps
def resize_to_limit(img: np.ndarray, max_dim=1280, division=2):
"""
ajust the size of the image so that the maximum dimension does not exceed max_dim, and the width and the height of the image are multiples of n.
:param img: the image to be processed.
:param max_dim: the maximum dimension constraint.
:param n: the number that needs to be multiples of.
:return: the adjusted image.
"""
h, w = img.shape[:2]
# ajust the size of the image according to the maximum dimension
if max_dim > 0 and max(h, w) > max_dim:
if h > w:
new_h = max_dim
new_w = int(w * (max_dim / h))
else:
new_w = max_dim
new_h = int(h * (max_dim / w))
img = cv2.resize(img, (new_w, new_h))
# ensure that the image dimensions are multiples of n
division = max(division, 1)
new_h = img.shape[0] - (img.shape[0] % division)
new_w = img.shape[1] - (img.shape[1] % division)
if new_h == 0 or new_w == 0:
# when the width or height is less than n, no need to process
return img
if new_h != img.shape[0] or new_w != img.shape[1]:
img = img[:new_h, :new_w]
return img
def get_rotation_matrix(pitch_, yaw_, roll_):
""" the input is in degree
"""
PI = np.pi
# transform to radian
pitch = pitch_ / 180 * PI
yaw = yaw_ / 180 * PI
roll = roll_ / 180 * PI
if pitch.ndim == 1:
pitch = np.expand_dims(pitch.cpu(), axis=1)
if yaw.ndim == 1:
yaw = np.expand_dims(yaw.cpu(), axis=1)
if roll.ndim == 1:
roll = np.expand_dims(roll.cpu(), axis=1)
# calculate the euler matrix
bs = pitch.shape[0]
ones = np.ones([bs, 1])
zeros = np.zeros([bs, 1])
x, y, z = pitch, yaw, roll
rot_x = np.concatenate([
ones, zeros, zeros,
zeros, np.cos(x), -np.sin(x),
zeros, np.sin(x), np.cos(x)
], axis=1).reshape([bs, 3, 3])
rot_y = np.concatenate([
np.cos(y), zeros, np.sin(y),
zeros, ones, zeros,
-np.sin(y), zeros, np.cos(y)
], axis=1).reshape([bs, 3, 3])
rot_z = np.concatenate([
np.cos(z), -np.sin(z), zeros,
np.sin(z), np.cos(z), zeros,
zeros, zeros, ones
], axis=1).reshape([bs, 3, 3])
rot = np.matmul(rot_z, np.matmul(rot_y, rot_x))
return np.transpose(rot, (0, 2, 1)) # transpose
def calculate_distance_ratio(lmk: np.ndarray, idx1: int, idx2: int, idx3: int, idx4: int,
eps: float = 1e-6) -> np.ndarray:
return (np.linalg.norm(lmk[:, idx1] - lmk[:, idx2], axis=1, keepdims=True) /
(np.linalg.norm(lmk[:, idx3] - lmk[:, idx4], axis=1, keepdims=True) + eps))
def calc_eye_close_ratio(lmk: np.ndarray, target_eye_ratio: np.ndarray = None) -> np.ndarray:
lefteye_close_ratio = calculate_distance_ratio(lmk, 6, 18, 0, 12)
righteye_close_ratio = calculate_distance_ratio(lmk, 30, 42, 24, 36)
if target_eye_ratio is not None:
return np.concatenate([lefteye_close_ratio, righteye_close_ratio, target_eye_ratio], axis=1)
else:
return np.concatenate([lefteye_close_ratio, righteye_close_ratio], axis=1)
def calc_lip_close_ratio(lmk: np.ndarray) -> np.ndarray:
return calculate_distance_ratio(lmk, 90, 102, 48, 66)
def _transform_img(img, M, dsize, flags=cv2.INTER_LINEAR, borderMode=None):
""" conduct similarity or affine transformation to the image, do not do border operation!
img:
M: 2x3 matrix or 3x3 matrix
dsize: target shape (width, height)
"""
if isinstance(dsize, tuple) or isinstance(dsize, list):
_dsize = tuple(dsize)
else:
_dsize = (dsize, dsize)
if borderMode is not None:
return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags, borderMode=borderMode, borderValue=(0, 0, 0))
else:
return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags)
def prepare_paste_back(mask_crop, crop_M_c2o, dsize):
"""prepare mask for later image paste back
"""
mask_ori = _transform_img(mask_crop, crop_M_c2o, dsize)
mask_ori = mask_ori.astype(np.float32) / 255.
return mask_ori
def transform_keypoint(pitch, yaw, roll, t, exp, scale, kp):
"""
transform the implicit keypoints with the pose, shift, and expression deformation
kp: BxNx3
"""
bs = kp.shape[0]
if kp.ndim == 2:
num_kp = kp.shape[1] // 3 # Bx(num_kpx3)
else:
num_kp = kp.shape[1] # Bxnum_kpx3
rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3)
# Eqn.2: s * (R * x_c,s + exp) + t
kp_transformed = kp.reshape(bs, num_kp, 3) @ rot_mat + exp.reshape(bs, num_kp, 3)
kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3)
kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty
return kp_transformed
def concat_feat(x, y):
bs = x.shape[0]
return np.concatenate([x.reshape(bs, -1), y.reshape(bs, -1)], axis=1)
def is_image(file_path):
image_extensions = ('.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff')
return file_path.lower().endswith(image_extensions)
def is_video(file_path):
if file_path.lower().endswith((".mp4", ".mov", ".avi", ".webm")) or os.path.isdir(file_path):
return True
return False
def make_abs_path(fn):
return osp.join(os.path.dirname(osp.dirname(osp.realpath(__file__))), fn)
class LowPassFilter:
def __init__(self):
self.prev_raw_value = None
self.prev_filtered_value = None
def process(self, value, alpha):
if self.prev_raw_value is None:
s = value
else:
s = alpha * value + (1.0 - alpha) * self.prev_filtered_value
self.prev_raw_value = value
self.prev_filtered_value = s
return s
class OneEuroFilter:
def __init__(self, mincutoff=1.0, beta=0.0, dcutoff=1.0, freq=30):
self.freq = freq
self.mincutoff = mincutoff
self.beta = beta
self.dcutoff = dcutoff
self.x_filter = LowPassFilter()
self.dx_filter = LowPassFilter()
def compute_alpha(self, cutoff):
te = 1.0 / self.freq
tau = 1.0 / (2 * np.pi * cutoff)
return 1.0 / (1.0 + tau / te)
def get_pre_x(self):
return self.x_filter.prev_filtered_value
def process(self, x):
prev_x = self.x_filter.prev_raw_value
dx = 0.0 if prev_x is None else (x - prev_x) * self.freq
edx = self.dx_filter.process(dx, self.compute_alpha(self.dcutoff))
cutoff = self.mincutoff + self.beta * np.abs(edx)
return self.x_filter.process(x, self.compute_alpha(cutoff))
|