File size: 1,937 Bytes
475d332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# -*- coding: utf-8 -*-
# @Author  : wenshao
# @Email   : [email protected]
# @Project : FasterLivePortrait
# @FileName: motion_extractor_model.py
import pdb
import numpy as np
from .base_model import BaseModel
import torch
from torch.cuda import nvtx
from .predictor import numpy_to_torch_dtype_dict


class AppearanceFeatureExtractorModel(BaseModel):
    """

    AppearanceFeatureExtractorModel

    """

    def __init__(self, **kwargs):
        super(AppearanceFeatureExtractorModel, self).__init__(**kwargs)
        self.predict_type = kwargs.get("predict_type", "trt")
        print(self.predict_type)

    def input_process(self, *data):
        img = data[0].astype(np.float32)
        img /= 255.0
        img = np.transpose(img, (2, 0, 1))
        return img[None]

    def output_process(self, *data):
        return data[0]

    def predict_trt(self, *data):
        nvtx.range_push("forward")
        feed_dict = {}
        for i, inp in enumerate(self.predictor.inputs):
            if isinstance(data[i], torch.Tensor):
                feed_dict[inp['name']] = data[i]
            else:
                feed_dict[inp['name']] = torch.from_numpy(data[i]).to(device=self.device,
                                                                      dtype=numpy_to_torch_dtype_dict[inp['dtype']])
        preds_dict = self.predictor.predict(feed_dict, self.cudaStream)
        outs = []
        for i, out in enumerate(self.predictor.outputs):
            outs.append(preds_dict[out["name"]].cpu().numpy())
        nvtx.range_pop()
        return outs

    def predict(self, *data):
        #data = self.input_process(*data)
        data = data[0]
        if self.predict_type == "trt":
            preds = self.predict_trt(data)
        else:
            preds = self.predictor.predict(data)
        outputs = self.output_process(*preds)
        return outputs