Spaces:
Sleeping
Sleeping
File size: 2,781 Bytes
23a3f70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import gradio as gr
from llama_index.core.readers import SimpleDirectoryReader
from llama_index.core import VectorStoreIndex, Document
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM
import csv
from docx import Document as DocxDocument
import fitz
# Define the list of LLMs with their names and models
lm_list = {
"google/gemma-2-9b-it": "Google Gemma 2.9B IT",
"mistralai/Mistral-7B-Instruct-v0.3": "Mistral 7B Instruct v0.3"
}
# Initialize the query engine globally
query_engine = None
def process_file(file):
file_extension = file.name.split(".")[-1].lower()
if file_extension == 'txt':
with open(file.name, 'r', encoding='utf-8') as f:
text = f.read()
elif file_extension == 'csv':
with open(file.name, 'r', encoding='utf-8') as f:
reader = csv.reader(f)
text = '\n'.join(','.join(row) for row in reader)
elif file_extension == 'pdf':
pdf_document = fitz.open(file.name, filetype=file_extension)
text = ""
for page_num in range(pdf_document.page_count):
page = pdf_document.load_page(page_num)
text += page.get_text("text")
pdf_document.close()
elif file_extension == 'docx':
docx_document = DocxDocument(file.name)
text = ""
for paragraph in docx_document.paragraphs:
text += paragraph.text + "\n"
return [Document(text=text)]
def handle_file_upload(file, llm_name):
global query_engine
Settings.llm = HuggingFaceLLM(model_name=llm_name)
documents = process_file(file)
text_splitter = SentenceSplitter(chunk_size=512, chunk_overlap=10)
Settings.embed_model = HuggingFaceEmbedding(model_name="nomic-embed-text:latest")
Settings.text_splitter = text_splitter
index = VectorStoreIndex.from_documents(
documents, transformations=[text_splitter], embed_model=Settings.embed_model
)
return index.as_query_engine()
def document_qa(file_upload, llm_choice, question_input):
query_engine = handle_file_upload(file_upload, llm_choice)
result = query_engine.query(question_input)
return str(result)
llm_choice = gr.Dropdown(choices=list(lm_list.values()), label="Choose LLM")
file_upload = gr.File(label="Upload Document")
question_input = gr.Textbox(label="Enter your question")
gr.Interface(
fn=document_qa,
inputs=[file_upload, llm_choice, question_input],
outputs=gr.Textbox(label="Answer"),
title="Document Question Answering",
description="Upload a document and choose a language model to get answers.",
allow_flagging=False
).launch()
|