Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from llama_index.core.readers import SimpleDirectoryReader
|
3 |
+
from llama_index.core import VectorStoreIndex, Document
|
4 |
+
from llama_index.core.node_parser import SentenceSplitter
|
5 |
+
from llama_index.core import Settings
|
6 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
8 |
+
import csv
|
9 |
+
from docx import Document as DocxDocument
|
10 |
+
import fitz
|
11 |
+
|
12 |
+
# Define the list of LLMs with their names and models
|
13 |
+
lm_list = {
|
14 |
+
"google/gemma-2-9b-it": "Google Gemma 2.9B IT",
|
15 |
+
"mistralai/Mistral-7B-Instruct-v0.3": "Mistral 7B Instruct v0.3"
|
16 |
+
}
|
17 |
+
|
18 |
+
# Initialize the query engine globally
|
19 |
+
query_engine = None
|
20 |
+
|
21 |
+
def process_file(file):
|
22 |
+
file_extension = file.name.split(".")[-1].lower()
|
23 |
+
|
24 |
+
if file_extension == 'txt':
|
25 |
+
with open(file.name, 'r', encoding='utf-8') as f:
|
26 |
+
text = f.read()
|
27 |
+
|
28 |
+
elif file_extension == 'csv':
|
29 |
+
with open(file.name, 'r', encoding='utf-8') as f:
|
30 |
+
reader = csv.reader(f)
|
31 |
+
text = '\n'.join(','.join(row) for row in reader)
|
32 |
+
|
33 |
+
elif file_extension == 'pdf':
|
34 |
+
pdf_document = fitz.open(file.name, filetype=file_extension)
|
35 |
+
text = ""
|
36 |
+
for page_num in range(pdf_document.page_count):
|
37 |
+
page = pdf_document.load_page(page_num)
|
38 |
+
text += page.get_text("text")
|
39 |
+
pdf_document.close()
|
40 |
+
|
41 |
+
elif file_extension == 'docx':
|
42 |
+
docx_document = DocxDocument(file.name)
|
43 |
+
text = ""
|
44 |
+
for paragraph in docx_document.paragraphs:
|
45 |
+
text += paragraph.text + "\n"
|
46 |
+
|
47 |
+
return [Document(text=text)]
|
48 |
+
|
49 |
+
def handle_file_upload(file, llm_name):
|
50 |
+
global query_engine
|
51 |
+
|
52 |
+
Settings.llm = HuggingFaceLLM(model_name=llm_name)
|
53 |
+
|
54 |
+
documents = process_file(file)
|
55 |
+
|
56 |
+
text_splitter = SentenceSplitter(chunk_size=512, chunk_overlap=10)
|
57 |
+
Settings.embed_model = HuggingFaceEmbedding(model_name="nomic-embed-text:latest")
|
58 |
+
Settings.text_splitter = text_splitter
|
59 |
+
index = VectorStoreIndex.from_documents(
|
60 |
+
documents, transformations=[text_splitter], embed_model=Settings.embed_model
|
61 |
+
)
|
62 |
+
|
63 |
+
return index.as_query_engine()
|
64 |
+
|
65 |
+
def document_qa(file_upload, llm_choice, question_input):
|
66 |
+
query_engine = handle_file_upload(file_upload, llm_choice)
|
67 |
+
result = query_engine.query(question_input)
|
68 |
+
return str(result)
|
69 |
+
|
70 |
+
|
71 |
+
llm_choice = gr.Dropdown(choices=list(lm_list.values()), label="Choose LLM")
|
72 |
+
file_upload = gr.File(label="Upload Document")
|
73 |
+
question_input = gr.Textbox(label="Enter your question")
|
74 |
+
|
75 |
+
gr.Interface(
|
76 |
+
fn=document_qa,
|
77 |
+
inputs=[file_upload, llm_choice, question_input],
|
78 |
+
outputs=gr.Textbox(label="Answer"),
|
79 |
+
title="Document Question Answering",
|
80 |
+
description="Upload a document and choose a language model to get answers.",
|
81 |
+
allow_flagging=False
|
82 |
+
).launch()
|