Spaces:
Sleeping
Sleeping
File size: 8,700 Bytes
291dbf7 1c6c5d7 291dbf7 1c6c5d7 291dbf7 1c6c5d7 291dbf7 1c6c5d7 291dbf7 1c6c5d7 c99999e 1c6c5d7 291dbf7 1c6c5d7 291dbf7 1c6c5d7 291dbf7 1c6c5d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
from typing import List, Literal, Tuple, TypedDict
import os
import gradio as gr
try:
from common import org_search_component as oss
from formatting import process_reasons, parse_pcs_descriptions, parse_geo_descriptions
from services import RfpRecommend, RfpFeedback
except ImportError:
from ..common import org_search_component as oss
from .formatting import process_reasons, parse_pcs_descriptions, parse_geo_descriptions
from .services import RfpRecommend, RfpFeedback
api = RfpRecommend()
reporting = RfpFeedback()
class LoggedComponents(TypedDict):
recommendations: gr.components.Component
ratings: List[gr.components.Component]
correctness: gr.components.Component
sufficiency: gr.components.Component
comments: gr.components.Component
email: gr.components.Component
def single_recommendation_response(
item_number: int,
rec_type: Literal["RFP"] = "RFP"
) -> gr.Radio:
"""Generates a radio button group to provide feedback for single recommendation indexed by `item_number`.
Since the index values start from `0` we add `1` to indicate the ordinal value in the info text.
Parameters
----------
item_number : int
Recommendation index starting from 0
Returns
-------
gr.Radio
"""
ordinal = str(item_number + 1)
suffix = "th"
if ordinal.endswith('1') and not ordinal.endswith('11'):
suffix = "st"
elif ordinal.endswith('2') and not ordinal.endswith('12'):
suffix = "nd"
elif ordinal.endswith('3') and not ordinal.endswith('13'):
suffix = "rd"
elem = gr.Radio(
choices=[
"Not relevant and not useful",
"Relevant but not useful",
"Relevant and useful"
],
label=f"Recommendation #{ordinal}",
info=f"Evaluate the {ordinal}{suffix} {rec_type} (if applicable)"
)
return elem
def recommend_invoke(recipient: gr.State):
response = api(candid_entity_id=recipient[0])
output = []
for rfp in (response.get("recommendations", []) or []):
output.append([
rfp["funder_id"],
rfp["funder_name"],
rfp["funder_address"],
rfp["amount"],
(
f"<a href='{rfp['application_url']}' target='_blank' rel='noopener noreferrer'>"
f"{rfp['application_url']}</a>"
),
rfp["deadline"],
rfp["description"],
parse_pcs_descriptions(rfp["taxonomy"]),
parse_geo_descriptions(rfp["area_served"])
])
if len(output) == 0:
raise gr.Error("No relevant RFPs were found, please try again in the future as new RFPs become available.")
return output, process_reasons(response.get("meta", {}) or {}), response
def build_recommender() -> Tuple[LoggedComponents, gr.Blocks]:
with gr.Blocks(theme=gr.themes.Soft(), title="RFP recommendations") as demo:
gr.Markdown(
"""
<h1>RFP recommendations</h1>
<p>Receive recommendations for funding opportunities relevant to your work.</p>
<p>To get started lookup your nonprofit and then click <b>Get recommendations</b>.</p>
"""
)
with gr.Row():
with gr.Column():
_, selected_org_state = oss.render()
with gr.Row():
recommend = gr.Button("Get recommendations", scale=5, variant="primary")
with gr.Row():
with gr.Accordion(label="Parameters used for recommendations", open=False):
reasons_output = gr.DataFrame(
col_count=3,
headers=["Reason category", "Reason value", "Reason description"],
interactive=False
)
rec_outputs = gr.DataFrame(
label="Recommended RFPs",
type="array",
headers=[
"Funder ID", "Name", "Address",
"Amount", "Application URL", "Deadline",
"Description", "About", "Where"
],
col_count=(9, "fixed"),
datatype=[
"number", "str", "str",
"str", "markdown", "date",
"str", "markdown", "markdown"
],
wrap=True,
max_height=1000,
column_widths=[
"5%", "10%", "20%",
"5", "15%", "5%",
"10%", "10%", "20%"
],
interactive=False
)
recommendations_json = gr.JSON(label="Recommended RFPs JSON", visible=False)
# pylint: disable=no-member
recommend.click(
fn=recommend_invoke,
inputs=[selected_org_state],
outputs=[rec_outputs, reasons_output, recommendations_json]
)
logged = LoggedComponents(
recommendations=recommendations_json
)
return logged, demo
def build_feedback(
components: LoggedComponents,
N: int = 5,
rec_type: Literal["RFP"] = "RFP",
) -> gr.Blocks:
def handle_feedback(*args):
try:
reporting(
recommendation_data=args[0],
ratings=list(args[1: (N + 1)]),
info_is_correct=args[N + 1],
info_is_sufficient=args[N + 2],
comments=args[N + 3],
email=args[N + 4]
)
gr.Info("Thank you for providing feedback!")
except Exception as ex:
if hasattr(ex, "response"):
error_msg = ex.response.json().get("response", {}).get("error")
raise gr.Error(f"Failed to submit feedback: {error_msg}")
raise gr.Error("Failed to submit feedback")
feedback_components = []
with gr.Blocks(theme=gr.themes.Soft(), title="Candid AI demo") as demo:
gr.Markdown("""
<h1>Help us improve this tool with your valuable feedback</h1>
Please provide feedback for the recommendations on the previous tab.
It is not required to provide feedback on all recommendations before submitting.
"""
)
with gr.Row():
with gr.Column():
with gr.Group():
for i in range(N):
f = single_recommendation_response(i, rec_type=rec_type)
feedback_components.append(f)
if "ratings" not in components:
components["ratings"] = [f]
else:
components["ratings"].append(f)
correctness = gr.Radio(
choices=["True", "False"],
label="Information is correct?",
info="Are the displayed RFP details correct?"
)
sufficiency = gr.Radio(
choices=["True", "False"],
label="Sufficient data?",
info="Is enough RFP data available to provide meaningful recommendations?"
)
comment = gr.Textbox(label="Additional comments (optional)", lines=4)
email = gr.Textbox(label="Your email (optional)", lines=1)
components["correctness"] = correctness
components["sufficiency"] = sufficiency
components["comments"] = comment
components["email"] = email
with gr.Row():
submit = gr.Button("Submit Feedback", variant='primary', scale=5)
gr.ClearButton(components=feedback_components, variant="stop")
# pylint: disable=no-member
submit.click(
fn=handle_feedback,
inputs=[comp for k, cl in components.items() for comp in (cl if isinstance(cl, list) else [cl])],
outputs=None,
show_api=False,
api_name=False,
preprocess=False,
)
return demo
def build_demo():
logger, recommender = build_recommender()
feedback = build_feedback(logger)
return gr.TabbedInterface(
interface_list=[recommender, feedback],
tab_names=["RFP recommendations", "Feedback"],
title="Candid's RFP recommendation engine",
theme=gr.themes.Soft()
)
if __name__ == '__main__':
app = build_demo()
app.queue(max_size=5).launch(
show_api=False,
auth=[
(os.getenv("APP_USERNAME"), os.getenv("APP_PASSWORD")),
(os.getenv("APP_PUBLIC_USERNAME"), os.getenv("APP_PUBLIC_PASSWORD")),
],
auth_message="Login to Candid's letter of intent demo",
ssr_mode=False
)
|