Spaces:
Running
Running
Add feedback tab
Browse files
app.py
CHANGED
@@ -1,12 +1,66 @@
|
|
|
|
1 |
import os
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
-
|
6 |
-
from
|
7 |
-
from
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
api = RfpRecommend()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
def recommend_invoke(recipient: gr.State):
|
@@ -27,14 +81,14 @@ def recommend_invoke(recipient: gr.State):
|
|
27 |
parse_pcs_descriptions(rfp["taxonomy"]),
|
28 |
parse_geo_descriptions(rfp["area_served"])
|
29 |
])
|
30 |
-
return (
|
31 |
-
output,
|
32 |
-
process_reasons(response.get("meta", {}) or {}),
|
33 |
-
response.get("recommendations", [])
|
34 |
-
)
|
35 |
|
|
|
|
|
36 |
|
37 |
-
|
|
|
|
|
|
|
38 |
with gr.Blocks(theme=gr.themes.Soft(), title="RFP recommendations") as demo:
|
39 |
gr.Markdown(
|
40 |
"""
|
@@ -82,8 +136,7 @@ def build_demo():
|
|
82 |
interactive=False
|
83 |
)
|
84 |
|
85 |
-
|
86 |
-
recommendations_json = gr.JSON(label="Recommended RFPs JSON")
|
87 |
|
88 |
# pylint: disable=no-member
|
89 |
recommend.click(
|
@@ -92,9 +145,105 @@ def build_demo():
|
|
92 |
outputs=[rec_outputs, reasons_output, recommendations_json]
|
93 |
)
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
return demo
|
96 |
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
if __name__ == '__main__':
|
99 |
app = build_demo()
|
100 |
app.queue(max_size=5).launch(
|
|
|
1 |
+
from typing import List, Literal, Tuple, TypedDict
|
2 |
import os
|
3 |
|
4 |
import gradio as gr
|
5 |
|
6 |
+
try:
|
7 |
+
from common import org_search_component as oss
|
8 |
+
from formatting import process_reasons, parse_pcs_descriptions, parse_geo_descriptions
|
9 |
+
from services import RfpRecommend, RfpFeedback
|
10 |
+
except ImportError:
|
11 |
+
from ..common import org_search_component as oss
|
12 |
+
from .formatting import process_reasons, parse_pcs_descriptions, parse_geo_descriptions
|
13 |
+
from .services import RfpRecommend, RfpFeedback
|
14 |
|
15 |
api = RfpRecommend()
|
16 |
+
reporting = RfpFeedback()
|
17 |
+
|
18 |
+
class LoggedComponents(TypedDict):
|
19 |
+
recommendations: gr.components.Component
|
20 |
+
ratings: List[gr.components.Component]
|
21 |
+
correctness: gr.components.Component
|
22 |
+
sufficiency: gr.components.Component
|
23 |
+
comments: gr.components.Component
|
24 |
+
email: gr.components.Component
|
25 |
+
|
26 |
+
|
27 |
+
def single_recommendation_response(
|
28 |
+
item_number: int,
|
29 |
+
rec_type: Literal["RFP"] = "RFP"
|
30 |
+
) -> gr.Radio:
|
31 |
+
"""Generates a radio button group to provide feedback for single recommendation indexed by `item_number`.
|
32 |
+
Since the index values start from `0` we add `1` to indicate the ordinal value in the info text.
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
item_number : int
|
37 |
+
Recommendation index starting from 0
|
38 |
+
|
39 |
+
Returns
|
40 |
+
-------
|
41 |
+
gr.Radio
|
42 |
+
"""
|
43 |
+
|
44 |
+
ordinal = str(item_number + 1)
|
45 |
+
|
46 |
+
suffix = "th"
|
47 |
+
if ordinal.endswith('1') and not ordinal.endswith('11'):
|
48 |
+
suffix = "st"
|
49 |
+
elif ordinal.endswith('2') and not ordinal.endswith('12'):
|
50 |
+
suffix = "nd"
|
51 |
+
elif ordinal.endswith('3') and not ordinal.endswith('13'):
|
52 |
+
suffix = "rd"
|
53 |
+
|
54 |
+
elem = gr.Radio(
|
55 |
+
choices=[
|
56 |
+
"Not relevant and not useful",
|
57 |
+
"Relevant but not useful",
|
58 |
+
"Relevant and useful"
|
59 |
+
],
|
60 |
+
label=f"Recommendation #{ordinal}",
|
61 |
+
info=f"Evaluate the {ordinal}{suffix} {rec_type} (if applicable)"
|
62 |
+
)
|
63 |
+
return elem
|
64 |
|
65 |
|
66 |
def recommend_invoke(recipient: gr.State):
|
|
|
81 |
parse_pcs_descriptions(rfp["taxonomy"]),
|
82 |
parse_geo_descriptions(rfp["area_served"])
|
83 |
])
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
if len(output) == 0:
|
86 |
+
raise gr.Error("No relevant RFPs were found, please try again in the future as new RFPs become available.")
|
87 |
|
88 |
+
return output, process_reasons(response.get("meta", {}) or {}), response
|
89 |
+
|
90 |
+
|
91 |
+
def build_recommender() -> Tuple[LoggedComponents, gr.Blocks]:
|
92 |
with gr.Blocks(theme=gr.themes.Soft(), title="RFP recommendations") as demo:
|
93 |
gr.Markdown(
|
94 |
"""
|
|
|
136 |
interactive=False
|
137 |
)
|
138 |
|
139 |
+
recommendations_json = gr.JSON(label="Recommended RFPs JSON", visible=False)
|
|
|
140 |
|
141 |
# pylint: disable=no-member
|
142 |
recommend.click(
|
|
|
145 |
outputs=[rec_outputs, reasons_output, recommendations_json]
|
146 |
)
|
147 |
|
148 |
+
logged = LoggedComponents(
|
149 |
+
recommendations=recommendations_json
|
150 |
+
)
|
151 |
+
|
152 |
+
return logged, demo
|
153 |
+
|
154 |
+
|
155 |
+
def build_feedback(
|
156 |
+
components: LoggedComponents,
|
157 |
+
N: int = 5,
|
158 |
+
rec_type: Literal["RFP"] = "RFP",
|
159 |
+
) -> gr.Blocks:
|
160 |
+
|
161 |
+
def handle_feedback(*args):
|
162 |
+
try:
|
163 |
+
reporting(
|
164 |
+
recommendation_data=args[0],
|
165 |
+
ratings=list(args[1: (N + 1)]),
|
166 |
+
info_is_correct=args[N + 1],
|
167 |
+
info_is_sufficient=args[N + 2],
|
168 |
+
comments=args[N + 3],
|
169 |
+
email=args[N + 4]
|
170 |
+
)
|
171 |
+
gr.Info("Thank you for providing feedback!")
|
172 |
+
except Exception as ex:
|
173 |
+
if hasattr(ex, "response"):
|
174 |
+
error_msg = ex.response.json().get("response", {}).get("error")
|
175 |
+
raise gr.Error(f"Failed to submit feedback: {error_msg}")
|
176 |
+
raise gr.Error("Failed to submit feedback")
|
177 |
+
|
178 |
+
feedback_components = []
|
179 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Candid AI demo") as demo:
|
180 |
+
gr.Markdown("""
|
181 |
+
<h1>Help us improve this tool with your valuable feedback</h1>
|
182 |
+
|
183 |
+
Please provide feedback for the recommendations on the previous tab.
|
184 |
+
|
185 |
+
It is not required to provide feedback on all recommendations before submitting.
|
186 |
+
"""
|
187 |
+
)
|
188 |
+
|
189 |
+
with gr.Row():
|
190 |
+
with gr.Column():
|
191 |
+
with gr.Group():
|
192 |
+
for i in range(N):
|
193 |
+
f = single_recommendation_response(i, rec_type=rec_type)
|
194 |
+
feedback_components.append(f)
|
195 |
+
if "ratings" not in components:
|
196 |
+
components["ratings"] = [f]
|
197 |
+
else:
|
198 |
+
components["ratings"].append(f)
|
199 |
+
|
200 |
+
correctness = gr.Radio(
|
201 |
+
choices=["True", "False"],
|
202 |
+
label="Information is correct?",
|
203 |
+
info="Are the displayed RFP details correct?"
|
204 |
+
)
|
205 |
+
sufficiency = gr.Radio(
|
206 |
+
choices=["True", "False"],
|
207 |
+
label="Sufficient data?",
|
208 |
+
info="Is enough RFP data available to provide meaningful recommendations?"
|
209 |
+
)
|
210 |
+
|
211 |
+
comment = gr.Textbox(label="Additional comments (optional)", lines=4)
|
212 |
+
email = gr.Textbox(label="Your email (optional)", lines=1)
|
213 |
+
|
214 |
+
components["correctness"] = correctness
|
215 |
+
components["sufficiency"] = sufficiency
|
216 |
+
components["comments"] = comment
|
217 |
+
components["email"] = email
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
submit = gr.Button("Submit Feedback", variant='primary', scale=5)
|
221 |
+
gr.ClearButton(components=feedback_components, variant="stop")
|
222 |
+
|
223 |
+
# pylint: disable=no-member
|
224 |
+
submit.click(
|
225 |
+
fn=handle_feedback,
|
226 |
+
inputs=[comp for k, cl in components.items() for comp in (cl if isinstance(cl, list) else [cl])],
|
227 |
+
outputs=None,
|
228 |
+
show_api=False,
|
229 |
+
api_name=False,
|
230 |
+
preprocess=False,
|
231 |
+
)
|
232 |
return demo
|
233 |
|
234 |
|
235 |
+
|
236 |
+
def build_demo():
|
237 |
+
logger, recommender = build_recommender()
|
238 |
+
feedback = build_feedback(logger)
|
239 |
+
return gr.TabbedInterface(
|
240 |
+
interface_list=[recommender, feedback],
|
241 |
+
tab_names=["RFP recommendations", "Feedback"],
|
242 |
+
title="Candid's RFP recommendation engine",
|
243 |
+
theme=gr.themes.Soft()
|
244 |
+
)
|
245 |
+
|
246 |
+
|
247 |
if __name__ == '__main__':
|
248 |
app = build_demo()
|
249 |
app.queue(max_size=5).launch(
|