Easy_RAG / README.md
CamiloVega's picture
Update README.md
c446e10 verified
|
raw
history blame
1.67 kB
metadata
title: Easy RAG
emoji: 🐒
colorFrom: purple
colorTo: indigo
sdk: gradio
sdk_version: 5.8.0
app_file: app.py
pinned: false
license: mit
short_description: Chat with your docs very Easy

Easy RAG πŸ€–

Easy RAG is a powerful and user-friendly Retrieval Augmented Generation (RAG) system that allows users to upload their own documents and query them using state-of-the-art language models.

Features

  • πŸ“„ Support for multiple document formats (PDF, TXT, DOCX)
  • πŸ“š Upload up to 5 documents (max 10MB each)
  • πŸ” Advanced document processing and chunking
  • πŸ’‘ Intelligent question answering using Llama-2
  • 🌐 Multilingual support
  • πŸš€ GPU-accelerated inference
  • πŸ“Š Source tracking and citation

Technical Stack

  • Language Model: Meta-llama/Llama-2-7b-chat-hf
  • Embeddings: intfloat/multilingual-e5-large
  • Vector Store: FAISS
  • UI Framework: Gradio
  • Document Processing: LangChain

Installation

  1. Clone the repository
  2. Install dependencies:
pip install -r requirements.txt
  1. Set up your HuggingFace token as an environment variable:
export HUGGINGFACE_TOKEN=your_token_here
  1. Run the application:
python app.py

Usage

  1. Upload your documents using the file upload interface
  2. Wait for the system to process and index your documents
  3. Start asking questions about your documents
  4. View answers with source citations

Requirements

See requirements.txt for a complete list of dependencies.

Credits

Based on original work by Camilo Vega, AI Professor and Solutions Consultant.

License

MIT License