Spaces:
Sleeping
Sleeping
File size: 11,289 Bytes
f498b40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os
import logging
from typing import List, Dict
import torch
import gradio as gr
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFacePipeline
from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
UPLOAD_FOLDER = "uploaded_docs"
class DocumentManager:
"""Class to manage document uploads and processing."""
def __init__(self):
self.upload_folder = UPLOAD_FOLDER
os.makedirs(self.upload_folder, exist_ok=True)
self.max_files = 5
self.max_file_size = 10 * 1024 * 1024 # 10 MB
self.supported_formats = ['.pdf', '.txt', '.docx']
self.documents = []
def validate_file(self, file):
if os.path.getsize(file.name) > self.max_file_size:
raise ValueError(f"File size exceeds {self.max_file_size // 1024 // 1024}MB limit")
ext = os.path.splitext(file.name)[1].lower()
if ext not in self.supported_formats:
raise ValueError(f"Unsupported file format. Supported formats: {', '.join(self.supported_formats)}")
def load_document(self, file_path: str) -> List:
ext = os.path.splitext(file_path)[1].lower()
try:
if ext == '.pdf':
loader = PyPDFLoader(file_path)
elif ext == '.txt':
loader = TextLoader(file_path)
elif ext == '.docx':
loader = Docx2txtLoader(file_path)
else:
raise ValueError(f"Unsupported file format: {ext}")
documents = loader.load()
for doc in documents:
doc.metadata.update({
'source': os.path.basename(file_path),
'type': 'uploaded'
})
return documents
except Exception as e:
logger.error(f"Error loading {file_path}: {str(e)}")
raise
def process_upload(self, files: List) -> str:
if len(os.listdir(self.upload_folder)) + len(files) > self.max_files:
raise ValueError(f"Maximum number of documents ({self.max_files}) exceeded")
processed_files = []
for file in files:
try:
self.validate_file(file)
save_path = os.path.join(self.upload_folder, file.name)
file.save(save_path)
docs = self.load_document(save_path)
self.documents.extend(docs)
processed_files.append(file.name)
except Exception as e:
logger.error(f"Error processing {file.name}: {str(e)}")
return f"Error processing {file.name}: {str(e)}"
return f"Successfully processed files: {', '.join(processed_files)}"
class RAGSystem:
"""Main RAG system class."""
def __init__(self, model_name: str = MODEL_NAME):
self.model_name = model_name
self.document_manager = DocumentManager()
self.embeddings = None
self.vector_store = None
self.qa_chain = None
self.is_initialized = False
def initialize_system(self, documents: List = None):
"""Initialize RAG system with provided documents."""
try:
if not documents:
raise ValueError("No documents provided for initialization")
# Initialize text splitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
separators=["\n\n", "\n", ". ", " ", ""]
)
# Process documents
chunks = text_splitter.split_documents(documents)
# Initialize embeddings
self.embeddings = HuggingFaceEmbeddings(
model_name="intfloat/multilingual-e5-large",
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
)
# Create vector store
self.vector_store = FAISS.from_documents(chunks, self.embeddings)
# Initialize LLM pipeline
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16,
device_map="auto"
)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.1,
device_map="auto"
)
llm = HuggingFacePipeline(pipeline=pipe)
# Create prompt template
prompt_template = """
Context: {context}
Based on the context above, please provide a clear and concise answer to the following question.
If the information is not in the context, explicitly state so.
Question: {question}
"""
PROMPT = PromptTemplate(
template=prompt_template,
input_variables=["context", "question"]
)
# Set up QA chain
self.qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=self.vector_store.as_retriever(search_kwargs={"k": 4}),
return_source_documents=True,
chain_type_kwargs={"prompt": PROMPT}
)
self.is_initialized = True
return "System initialized successfully"
except Exception as e:
logger.error(f"Error during system initialization: {str(e)}")
return f"Error: {str(e)}"
def generate_response(self, question: str) -> Dict:
"""Generate response for a given question."""
if not self.is_initialized:
return {"error": "System not initialized. Please upload documents first."}
try:
result = self.qa_chain({"query": question})
response = {
'answer': result['result'],
'sources': []
}
for doc in result['source_documents']:
source = {
'title': doc.metadata.get('source', 'Unknown'),
'content': doc.page_content[:200] + "..." if len(doc.page_content) > 200 else doc.page_content
}
response['sources'].append(source)
return response
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
return {"error": str(e)}
# Initialize RAG system
rag_system = RAGSystem()
def process_file_upload(files):
"""Handle file uploads and system initialization."""
try:
upload_result = rag_system.document_manager.process_upload(files)
if "Error" in upload_result:
return upload_result
init_result = rag_system.initialize_system(rag_system.document_manager.documents)
return f"{upload_result}\n{init_result}"
except Exception as e:
return f"Error: {str(e)}"
def process_query(message, history):
"""Process user query and generate response."""
try:
if not rag_system.is_initialized:
return history + [(message, "Please upload documents first.")]
response = rag_system.generate_response(message)
if "error" in response:
return history + [(message, f"Error: {response['error']}")]
answer = response['answer']
sources = set([source['title'] for source in response['sources']])
if sources:
answer += "\n\nπ Sources:\n" + "\n".join([f"β’ {source}" for source in sources])
return history + [(message, answer)]
except Exception as e:
return history + [(message, f"Error: {str(e)}")]
# Create Gradio interface
demo = gr.Blocks(css="div.gradio-container {background-color: #f0f2f6}")
with demo:
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
<h1 style="color: #2d333a;">π€ Easy RAG</h1>
<p style="color: #4a5568;">
A simple and powerful RAG system for your documents
</p>
</div>
""")
with gr.Row():
file_output = gr.File(
file_count="multiple",
label="Upload Documents (PDF, TXT, DOCX - Max 5 files, 10MB each)"
)
upload_button = gr.Button("Upload and Initialize")
system_output = gr.Textbox(label="System Status")
chatbot = gr.Chatbot(
show_label=False,
container=True,
height=400,
show_copy_button=True
)
with gr.Row():
message = gr.Textbox(
placeholder="Ask a question about your documents...",
show_label=False,
container=False,
scale=8
)
clear = gr.Button("ποΈ Clear", size="sm", scale=1)
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 20px;
background-color: #f8f9fa; border-radius: 10px;">
<div style="margin-bottom: 15px;">
<h3 style="color: #2d333a;">π About Easy RAG</h3>
<p style="color: #666; font-size: 14px;">
A powerful RAG system that lets you query your documents using:
</p>
<ul style="list-style: none; color: #666; font-size: 14px;">
<li>πΉ LLM: Llama-2-7b-chat-hf</li>
<li>πΉ Embeddings: multilingual-e5-large</li>
<li>πΉ Vector Store: FAISS</li>
</ul>
</div>
<div style="border-top: 1px solid #ddd; padding-top: 15px;">
<p style="color: #666; font-size: 14px;">
Based on original work by <a href="https://www.linkedin.com/in/camilo-vega-169084b1/"
target="_blank" style="color: #2196F3; text-decoration: none;">Camilo Vega</a>
</p>
</div>
</div>
""")
# Set up event handlers
upload_button.click(
process_file_upload,
inputs=[file_output],
outputs=[system_output]
)
message.submit(
process_query,
inputs=[message, chatbot],
outputs=[chatbot]
)
clear.click(lambda: None, None, chatbot)
demo.launch() |