File size: 11,289 Bytes
f498b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
import logging
from typing import List, Dict
import torch
import gradio as gr
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFacePipeline
from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
UPLOAD_FOLDER = "uploaded_docs"

class DocumentManager:
    """Class to manage document uploads and processing."""
    
    def __init__(self):
        self.upload_folder = UPLOAD_FOLDER
        os.makedirs(self.upload_folder, exist_ok=True)
        self.max_files = 5
        self.max_file_size = 10 * 1024 * 1024  # 10 MB
        self.supported_formats = ['.pdf', '.txt', '.docx']
        self.documents = []
        
    def validate_file(self, file):
        if os.path.getsize(file.name) > self.max_file_size:
            raise ValueError(f"File size exceeds {self.max_file_size // 1024 // 1024}MB limit")
        
        ext = os.path.splitext(file.name)[1].lower()
        if ext not in self.supported_formats:
            raise ValueError(f"Unsupported file format. Supported formats: {', '.join(self.supported_formats)}")
            
    def load_document(self, file_path: str) -> List:
        ext = os.path.splitext(file_path)[1].lower()
        try:
            if ext == '.pdf':
                loader = PyPDFLoader(file_path)
            elif ext == '.txt':
                loader = TextLoader(file_path)
            elif ext == '.docx':
                loader = Docx2txtLoader(file_path)
            else:
                raise ValueError(f"Unsupported file format: {ext}")
                
            documents = loader.load()
            for doc in documents:
                doc.metadata.update({
                    'source': os.path.basename(file_path),
                    'type': 'uploaded'
                })
            return documents
            
        except Exception as e:
            logger.error(f"Error loading {file_path}: {str(e)}")
            raise

    def process_upload(self, files: List) -> str:
        if len(os.listdir(self.upload_folder)) + len(files) > self.max_files:
            raise ValueError(f"Maximum number of documents ({self.max_files}) exceeded")
            
        processed_files = []
        for file in files:
            try:
                self.validate_file(file)
                save_path = os.path.join(self.upload_folder, file.name)
                file.save(save_path)
                docs = self.load_document(save_path)
                self.documents.extend(docs)
                processed_files.append(file.name)
            except Exception as e:
                logger.error(f"Error processing {file.name}: {str(e)}")
                return f"Error processing {file.name}: {str(e)}"
                
        return f"Successfully processed files: {', '.join(processed_files)}"

class RAGSystem:
    """Main RAG system class."""
    
    def __init__(self, model_name: str = MODEL_NAME):
        self.model_name = model_name
        self.document_manager = DocumentManager()
        self.embeddings = None
        self.vector_store = None
        self.qa_chain = None
        self.is_initialized = False
        
    def initialize_system(self, documents: List = None):
        """Initialize RAG system with provided documents."""
        try:
            if not documents:
                raise ValueError("No documents provided for initialization")
                
            # Initialize text splitter
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=500,
                chunk_overlap=50,
                separators=["\n\n", "\n", ". ", " ", ""]
            )
            
            # Process documents
            chunks = text_splitter.split_documents(documents)
            
            # Initialize embeddings
            self.embeddings = HuggingFaceEmbeddings(
                model_name="intfloat/multilingual-e5-large",
                model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
            )
            
            # Create vector store
            self.vector_store = FAISS.from_documents(chunks, self.embeddings)
            
            # Initialize LLM pipeline
            tokenizer = AutoTokenizer.from_pretrained(self.model_name)
            model = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                torch_dtype=torch.float16,
                device_map="auto"
            )
            
            pipe = pipeline(
                "text-generation",
                model=model,
                tokenizer=tokenizer,
                max_new_tokens=512,
                temperature=0.1,
                device_map="auto"
            )
            
            llm = HuggingFacePipeline(pipeline=pipe)
            
            # Create prompt template
            prompt_template = """
            Context: {context}
            
            Based on the context above, please provide a clear and concise answer to the following question.
            If the information is not in the context, explicitly state so.
            
            Question: {question}
            """
            
            PROMPT = PromptTemplate(
                template=prompt_template,
                input_variables=["context", "question"]
            )
            
            # Set up QA chain
            self.qa_chain = RetrievalQA.from_chain_type(
                llm=llm,
                chain_type="stuff",
                retriever=self.vector_store.as_retriever(search_kwargs={"k": 4}),
                return_source_documents=True,
                chain_type_kwargs={"prompt": PROMPT}
            )
            
            self.is_initialized = True
            return "System initialized successfully"
            
        except Exception as e:
            logger.error(f"Error during system initialization: {str(e)}")
            return f"Error: {str(e)}"

    def generate_response(self, question: str) -> Dict:
        """Generate response for a given question."""
        if not self.is_initialized:
            return {"error": "System not initialized. Please upload documents first."}
            
        try:
            result = self.qa_chain({"query": question})
            
            response = {
                'answer': result['result'],
                'sources': []
            }
            
            for doc in result['source_documents']:
                source = {
                    'title': doc.metadata.get('source', 'Unknown'),
                    'content': doc.page_content[:200] + "..." if len(doc.page_content) > 200 else doc.page_content
                }
                response['sources'].append(source)
            
            return response
            
        except Exception as e:
            logger.error(f"Error generating response: {str(e)}")
            return {"error": str(e)}

# Initialize RAG system
rag_system = RAGSystem()

def process_file_upload(files):
    """Handle file uploads and system initialization."""
    try:
        upload_result = rag_system.document_manager.process_upload(files)
        if "Error" in upload_result:
            return upload_result
            
        init_result = rag_system.initialize_system(rag_system.document_manager.documents)
        return f"{upload_result}\n{init_result}"
    except Exception as e:
        return f"Error: {str(e)}"

def process_query(message, history):
    """Process user query and generate response."""
    try:
        if not rag_system.is_initialized:
            return history + [(message, "Please upload documents first.")]
            
        response = rag_system.generate_response(message)
        if "error" in response:
            return history + [(message, f"Error: {response['error']}")]
            
        answer = response['answer']
        sources = set([source['title'] for source in response['sources']])
        if sources:
            answer += "\n\nπŸ“š Sources:\n" + "\n".join([f"β€’ {source}" for source in sources])
            
        return history + [(message, answer)]
    except Exception as e:
        return history + [(message, f"Error: {str(e)}")]

# Create Gradio interface
demo = gr.Blocks(css="div.gradio-container {background-color: #f0f2f6}")

with demo:
    gr.HTML("""
        <div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
            <h1 style="color: #2d333a;">πŸ€– Easy RAG</h1>
            <p style="color: #4a5568;">
                A simple and powerful RAG system for your documents
            </p>
        </div>
    """)
    
    with gr.Row():
        file_output = gr.File(
            file_count="multiple",
            label="Upload Documents (PDF, TXT, DOCX - Max 5 files, 10MB each)"
        )
    
    upload_button = gr.Button("Upload and Initialize")
    system_output = gr.Textbox(label="System Status")
    
    chatbot = gr.Chatbot(
        show_label=False,
        container=True,
        height=400,
        show_copy_button=True
    )
    
    with gr.Row():
        message = gr.Textbox(
            placeholder="Ask a question about your documents...",
            show_label=False,
            container=False,
            scale=8
        )
        clear = gr.Button("πŸ—‘οΈ Clear", size="sm", scale=1)
    
    gr.HTML("""
        <div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 20px;
                    background-color: #f8f9fa; border-radius: 10px;">
            <div style="margin-bottom: 15px;">
                <h3 style="color: #2d333a;">πŸ” About Easy RAG</h3>
                <p style="color: #666; font-size: 14px;">
                    A powerful RAG system that lets you query your documents using:
                </p>
                <ul style="list-style: none; color: #666; font-size: 14px;">
                    <li>πŸ”Ή LLM: Llama-2-7b-chat-hf</li>
                    <li>πŸ”Ή Embeddings: multilingual-e5-large</li>
                    <li>πŸ”Ή Vector Store: FAISS</li>
                </ul>
            </div>
            <div style="border-top: 1px solid #ddd; padding-top: 15px;">
                <p style="color: #666; font-size: 14px;">
                    Based on original work by <a href="https://www.linkedin.com/in/camilo-vega-169084b1/" 
                    target="_blank" style="color: #2196F3; text-decoration: none;">Camilo Vega</a>
                </p>
            </div>
        </div>
    """)
    
    # Set up event handlers
    upload_button.click(
        process_file_upload,
        inputs=[file_output],
        outputs=[system_output]
    )
    
    message.submit(
        process_query,
        inputs=[message, chatbot],
        outputs=[chatbot]
    )
    
    clear.click(lambda: None, None, chatbot)

demo.launch()