Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
from typing import List, Dict
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from langchain.llms import HuggingFacePipeline
|
12 |
+
from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
|
13 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
14 |
+
|
15 |
+
# Configure logging
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO,
|
18 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
19 |
+
)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
|
23 |
+
UPLOAD_FOLDER = "uploaded_docs"
|
24 |
+
|
25 |
+
class DocumentManager:
|
26 |
+
"""Class to manage document uploads and processing."""
|
27 |
+
|
28 |
+
def __init__(self):
|
29 |
+
self.upload_folder = UPLOAD_FOLDER
|
30 |
+
os.makedirs(self.upload_folder, exist_ok=True)
|
31 |
+
self.max_files = 5
|
32 |
+
self.max_file_size = 10 * 1024 * 1024 # 10 MB
|
33 |
+
self.supported_formats = ['.pdf', '.txt', '.docx']
|
34 |
+
self.documents = []
|
35 |
+
|
36 |
+
def validate_file(self, file):
|
37 |
+
if os.path.getsize(file.name) > self.max_file_size:
|
38 |
+
raise ValueError(f"File size exceeds {self.max_file_size // 1024 // 1024}MB limit")
|
39 |
+
|
40 |
+
ext = os.path.splitext(file.name)[1].lower()
|
41 |
+
if ext not in self.supported_formats:
|
42 |
+
raise ValueError(f"Unsupported file format. Supported formats: {', '.join(self.supported_formats)}")
|
43 |
+
|
44 |
+
def load_document(self, file_path: str) -> List:
|
45 |
+
ext = os.path.splitext(file_path)[1].lower()
|
46 |
+
try:
|
47 |
+
if ext == '.pdf':
|
48 |
+
loader = PyPDFLoader(file_path)
|
49 |
+
elif ext == '.txt':
|
50 |
+
loader = TextLoader(file_path)
|
51 |
+
elif ext == '.docx':
|
52 |
+
loader = Docx2txtLoader(file_path)
|
53 |
+
else:
|
54 |
+
raise ValueError(f"Unsupported file format: {ext}")
|
55 |
+
|
56 |
+
documents = loader.load()
|
57 |
+
for doc in documents:
|
58 |
+
doc.metadata.update({
|
59 |
+
'source': os.path.basename(file_path),
|
60 |
+
'type': 'uploaded'
|
61 |
+
})
|
62 |
+
return documents
|
63 |
+
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Error loading {file_path}: {str(e)}")
|
66 |
+
raise
|
67 |
+
|
68 |
+
def process_upload(self, files: List) -> str:
|
69 |
+
if len(os.listdir(self.upload_folder)) + len(files) > self.max_files:
|
70 |
+
raise ValueError(f"Maximum number of documents ({self.max_files}) exceeded")
|
71 |
+
|
72 |
+
processed_files = []
|
73 |
+
for file in files:
|
74 |
+
try:
|
75 |
+
self.validate_file(file)
|
76 |
+
save_path = os.path.join(self.upload_folder, file.name)
|
77 |
+
file.save(save_path)
|
78 |
+
docs = self.load_document(save_path)
|
79 |
+
self.documents.extend(docs)
|
80 |
+
processed_files.append(file.name)
|
81 |
+
except Exception as e:
|
82 |
+
logger.error(f"Error processing {file.name}: {str(e)}")
|
83 |
+
return f"Error processing {file.name}: {str(e)}"
|
84 |
+
|
85 |
+
return f"Successfully processed files: {', '.join(processed_files)}"
|
86 |
+
|
87 |
+
class RAGSystem:
|
88 |
+
"""Main RAG system class."""
|
89 |
+
|
90 |
+
def __init__(self, model_name: str = MODEL_NAME):
|
91 |
+
self.model_name = model_name
|
92 |
+
self.document_manager = DocumentManager()
|
93 |
+
self.embeddings = None
|
94 |
+
self.vector_store = None
|
95 |
+
self.qa_chain = None
|
96 |
+
self.is_initialized = False
|
97 |
+
|
98 |
+
def initialize_system(self, documents: List = None):
|
99 |
+
"""Initialize RAG system with provided documents."""
|
100 |
+
try:
|
101 |
+
if not documents:
|
102 |
+
raise ValueError("No documents provided for initialization")
|
103 |
+
|
104 |
+
# Initialize text splitter
|
105 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
106 |
+
chunk_size=500,
|
107 |
+
chunk_overlap=50,
|
108 |
+
separators=["\n\n", "\n", ". ", " ", ""]
|
109 |
+
)
|
110 |
+
|
111 |
+
# Process documents
|
112 |
+
chunks = text_splitter.split_documents(documents)
|
113 |
+
|
114 |
+
# Initialize embeddings
|
115 |
+
self.embeddings = HuggingFaceEmbeddings(
|
116 |
+
model_name="intfloat/multilingual-e5-large",
|
117 |
+
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
118 |
+
)
|
119 |
+
|
120 |
+
# Create vector store
|
121 |
+
self.vector_store = FAISS.from_documents(chunks, self.embeddings)
|
122 |
+
|
123 |
+
# Initialize LLM pipeline
|
124 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
125 |
+
model = AutoModelForCausalLM.from_pretrained(
|
126 |
+
self.model_name,
|
127 |
+
torch_dtype=torch.float16,
|
128 |
+
device_map="auto"
|
129 |
+
)
|
130 |
+
|
131 |
+
pipe = pipeline(
|
132 |
+
"text-generation",
|
133 |
+
model=model,
|
134 |
+
tokenizer=tokenizer,
|
135 |
+
max_new_tokens=512,
|
136 |
+
temperature=0.1,
|
137 |
+
device_map="auto"
|
138 |
+
)
|
139 |
+
|
140 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
141 |
+
|
142 |
+
# Create prompt template
|
143 |
+
prompt_template = """
|
144 |
+
Context: {context}
|
145 |
+
|
146 |
+
Based on the context above, please provide a clear and concise answer to the following question.
|
147 |
+
If the information is not in the context, explicitly state so.
|
148 |
+
|
149 |
+
Question: {question}
|
150 |
+
"""
|
151 |
+
|
152 |
+
PROMPT = PromptTemplate(
|
153 |
+
template=prompt_template,
|
154 |
+
input_variables=["context", "question"]
|
155 |
+
)
|
156 |
+
|
157 |
+
# Set up QA chain
|
158 |
+
self.qa_chain = RetrievalQA.from_chain_type(
|
159 |
+
llm=llm,
|
160 |
+
chain_type="stuff",
|
161 |
+
retriever=self.vector_store.as_retriever(search_kwargs={"k": 4}),
|
162 |
+
return_source_documents=True,
|
163 |
+
chain_type_kwargs={"prompt": PROMPT}
|
164 |
+
)
|
165 |
+
|
166 |
+
self.is_initialized = True
|
167 |
+
return "System initialized successfully"
|
168 |
+
|
169 |
+
except Exception as e:
|
170 |
+
logger.error(f"Error during system initialization: {str(e)}")
|
171 |
+
return f"Error: {str(e)}"
|
172 |
+
|
173 |
+
def generate_response(self, question: str) -> Dict:
|
174 |
+
"""Generate response for a given question."""
|
175 |
+
if not self.is_initialized:
|
176 |
+
return {"error": "System not initialized. Please upload documents first."}
|
177 |
+
|
178 |
+
try:
|
179 |
+
result = self.qa_chain({"query": question})
|
180 |
+
|
181 |
+
response = {
|
182 |
+
'answer': result['result'],
|
183 |
+
'sources': []
|
184 |
+
}
|
185 |
+
|
186 |
+
for doc in result['source_documents']:
|
187 |
+
source = {
|
188 |
+
'title': doc.metadata.get('source', 'Unknown'),
|
189 |
+
'content': doc.page_content[:200] + "..." if len(doc.page_content) > 200 else doc.page_content
|
190 |
+
}
|
191 |
+
response['sources'].append(source)
|
192 |
+
|
193 |
+
return response
|
194 |
+
|
195 |
+
except Exception as e:
|
196 |
+
logger.error(f"Error generating response: {str(e)}")
|
197 |
+
return {"error": str(e)}
|
198 |
+
|
199 |
+
# Initialize RAG system
|
200 |
+
rag_system = RAGSystem()
|
201 |
+
|
202 |
+
def process_file_upload(files):
|
203 |
+
"""Handle file uploads and system initialization."""
|
204 |
+
try:
|
205 |
+
upload_result = rag_system.document_manager.process_upload(files)
|
206 |
+
if "Error" in upload_result:
|
207 |
+
return upload_result
|
208 |
+
|
209 |
+
init_result = rag_system.initialize_system(rag_system.document_manager.documents)
|
210 |
+
return f"{upload_result}\n{init_result}"
|
211 |
+
except Exception as e:
|
212 |
+
return f"Error: {str(e)}"
|
213 |
+
|
214 |
+
def process_query(message, history):
|
215 |
+
"""Process user query and generate response."""
|
216 |
+
try:
|
217 |
+
if not rag_system.is_initialized:
|
218 |
+
return history + [(message, "Please upload documents first.")]
|
219 |
+
|
220 |
+
response = rag_system.generate_response(message)
|
221 |
+
if "error" in response:
|
222 |
+
return history + [(message, f"Error: {response['error']}")]
|
223 |
+
|
224 |
+
answer = response['answer']
|
225 |
+
sources = set([source['title'] for source in response['sources']])
|
226 |
+
if sources:
|
227 |
+
answer += "\n\n๐ Sources:\n" + "\n".join([f"โข {source}" for source in sources])
|
228 |
+
|
229 |
+
return history + [(message, answer)]
|
230 |
+
except Exception as e:
|
231 |
+
return history + [(message, f"Error: {str(e)}")]
|
232 |
+
|
233 |
+
# Create Gradio interface
|
234 |
+
demo = gr.Blocks(css="div.gradio-container {background-color: #f0f2f6}")
|
235 |
+
|
236 |
+
with demo:
|
237 |
+
gr.HTML("""
|
238 |
+
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
|
239 |
+
<h1 style="color: #2d333a;">๐ค Easy RAG</h1>
|
240 |
+
<p style="color: #4a5568;">
|
241 |
+
A simple and powerful RAG system for your documents
|
242 |
+
</p>
|
243 |
+
</div>
|
244 |
+
""")
|
245 |
+
|
246 |
+
with gr.Row():
|
247 |
+
file_output = gr.File(
|
248 |
+
file_count="multiple",
|
249 |
+
label="Upload Documents (PDF, TXT, DOCX - Max 5 files, 10MB each)"
|
250 |
+
)
|
251 |
+
|
252 |
+
upload_button = gr.Button("Upload and Initialize")
|
253 |
+
system_output = gr.Textbox(label="System Status")
|
254 |
+
|
255 |
+
chatbot = gr.Chatbot(
|
256 |
+
show_label=False,
|
257 |
+
container=True,
|
258 |
+
height=400,
|
259 |
+
show_copy_button=True
|
260 |
+
)
|
261 |
+
|
262 |
+
with gr.Row():
|
263 |
+
message = gr.Textbox(
|
264 |
+
placeholder="Ask a question about your documents...",
|
265 |
+
show_label=False,
|
266 |
+
container=False,
|
267 |
+
scale=8
|
268 |
+
)
|
269 |
+
clear = gr.Button("๐๏ธ Clear", size="sm", scale=1)
|
270 |
+
|
271 |
+
gr.HTML("""
|
272 |
+
<div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 20px;
|
273 |
+
background-color: #f8f9fa; border-radius: 10px;">
|
274 |
+
<div style="margin-bottom: 15px;">
|
275 |
+
<h3 style="color: #2d333a;">๐ About Easy RAG</h3>
|
276 |
+
<p style="color: #666; font-size: 14px;">
|
277 |
+
A powerful RAG system that lets you query your documents using:
|
278 |
+
</p>
|
279 |
+
<ul style="list-style: none; color: #666; font-size: 14px;">
|
280 |
+
<li>๐น LLM: Llama-2-7b-chat-hf</li>
|
281 |
+
<li>๐น Embeddings: multilingual-e5-large</li>
|
282 |
+
<li>๐น Vector Store: FAISS</li>
|
283 |
+
</ul>
|
284 |
+
</div>
|
285 |
+
<div style="border-top: 1px solid #ddd; padding-top: 15px;">
|
286 |
+
<p style="color: #666; font-size: 14px;">
|
287 |
+
Based on original work by <a href="https://www.linkedin.com/in/camilo-vega-169084b1/"
|
288 |
+
target="_blank" style="color: #2196F3; text-decoration: none;">Camilo Vega</a>
|
289 |
+
</p>
|
290 |
+
</div>
|
291 |
+
</div>
|
292 |
+
""")
|
293 |
+
|
294 |
+
# Set up event handlers
|
295 |
+
upload_button.click(
|
296 |
+
process_file_upload,
|
297 |
+
inputs=[file_output],
|
298 |
+
outputs=[system_output]
|
299 |
+
)
|
300 |
+
|
301 |
+
message.submit(
|
302 |
+
process_query,
|
303 |
+
inputs=[message, chatbot],
|
304 |
+
outputs=[chatbot]
|
305 |
+
)
|
306 |
+
|
307 |
+
clear.click(lambda: None, None, chatbot)
|
308 |
+
|
309 |
+
demo.launch()
|