File size: 13,254 Bytes
f498b40
627a624
f498b40
 
 
 
9a0e6f3
 
 
f498b40
 
9a0e6f3
f498b40
 
985ad05
f498b40
 
 
 
 
 
 
 
985ad05
f498b40
 
985ad05
f498b40
985ad05
 
f498b40
 
 
627a624
 
f498b40
985ad05
f498b40
 
 
985ad05
 
 
 
 
f498b40
 
985ad05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627a624
f498b40
 
627a624
f498b40
985ad05
 
 
 
 
f498b40
985ad05
 
 
 
 
 
 
 
 
 
 
f498b40
985ad05
f498b40
985ad05
 
 
f498b40
 
 
 
985ad05
f498b40
 
 
 
 
985ad05
f498b40
 
985ad05
 
f498b40
985ad05
f498b40
 
 
 
 
985ad05
f498b40
985ad05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f498b40
985ad05
 
f498b40
985ad05
 
f498b40
985ad05
f498b40
 
 
 
985ad05
f498b40
 
 
 
 
 
 
 
 
 
 
985ad05
f498b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
985ad05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f498b40
 
 
 
 
 
985ad05
f498b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
985ad05
f498b40
 
985ad05
 
f498b40
985ad05
f498b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a0e6f3
f498b40
9a0e6f3
f498b40
9a0e6f3
f498b40
 
 
 
627a624
 
985ad05
cc3a585
 
985ad05
cc3a585
627a624
 
985ad05
9a0e6f3
627a624
 
 
 
 
9a0e6f3
627a624
 
9a0e6f3
985ad05
9a0e6f3
 
985ad05
627a624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a0e6f3
f498b40
 
9a0e6f3
f498b40
9a0e6f3
f498b40
9a0e6f3
 
f498b40
9a0e6f3
f498b40
 
 
 
 
9a0e6f3
 
f498b40
 
 
 
 
 
cc3a585
 
985ad05
cc3a585
 
 
 
 
 
 
 
f498b40
 
985ad05
 
f498b40
 
 
 
 
 
 
 
 
 
 
 
9a0e6f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
import shutil
import logging
from typing import List, Dict
import torch
import gradio as gr
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFacePipeline
from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Constants
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
UPLOAD_FOLDER = "uploaded_docs"
EMBEDDING_MODEL = "intfloat/multilingual-e5-large"

class RAGSystem:
    """Main RAG system class."""
    
    def __init__(self):
        self.upload_folder = UPLOAD_FOLDER
        if os.path.exists(self.upload_folder):
            shutil.rmtree(self.upload_folder)
        os.makedirs(self.upload_folder, exist_ok=True)
        
        self.max_files = 5
        self.max_file_size = 10 * 1024 * 1024  # 10 MB
        self.supported_formats = ['.pdf', '.txt', '.docx']
        
        # Initialize components
        self.embeddings = None
        self.vector_store = None
        self.qa_chain = None
        self.documents = []
        
        # Initialize embeddings once
        self.initialize_embeddings()
        
    def initialize_embeddings(self):
        """Initialize embedding model."""
        try:
            self.embeddings = HuggingFaceEmbeddings(
                model_name=EMBEDDING_MODEL,
                model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
            )
        except Exception as e:
            logger.error(f"Error initializing embeddings: {str(e)}")
            raise

    def validate_file(self, file_path: str, file_size: int) -> bool:
        """Validate uploaded file."""
        if file_size > self.max_file_size:
            raise ValueError(f"File size exceeds {self.max_file_size // 1024 // 1024}MB limit")
        
        ext = os.path.splitext(file_path)[1].lower()
        if ext not in self.supported_formats:
            raise ValueError(f"Unsupported format. Supported: {', '.join(self.supported_formats)}")
        return True

    def process_file(self, file: gr.File) -> List:
        """Process a single file and return documents."""
        try:
            file_path = file.name
            file_size = os.path.getsize(file_path)
            self.validate_file(file_path, file_size)
            
            # Copy file to upload directory
            filename = os.path.basename(file_path)
            save_path = os.path.join(self.upload_folder, filename)
            shutil.copy2(file_path, save_path)
            
            # Load documents based on file type
            ext = os.path.splitext(file_path)[1].lower()
            if ext == '.pdf':
                loader = PyPDFLoader(save_path)
            elif ext == '.txt':
                loader = TextLoader(save_path)
            else:  # .docx
                loader = Docx2txtLoader(save_path)
                
            documents = loader.load()
            for doc in documents:
                doc.metadata.update({
                    'source': filename,
                    'type': 'uploaded'
                })
            return documents
            
        except Exception as e:
            logger.error(f"Error processing {file_path}: {str(e)}")
            raise

    def update_vector_store(self, new_documents: List):
        """Update vector store with new documents."""
        try:
            # Process documents
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=500,
                chunk_overlap=50,
                separators=["\n\n", "\n", ". ", " ", ""]
            )
            chunks = text_splitter.split_documents(new_documents)
            
            # Create or update vector store
            if self.vector_store is None:
                self.vector_store = FAISS.from_documents(chunks, self.embeddings)
            else:
                self.vector_store.add_documents(chunks)
                
        except Exception as e:
            logger.error(f"Error updating vector store: {str(e)}")
            raise

    def initialize_llm(self):
        """Initialize the language model and QA chain."""
        try:
            # Get Hugging Face token
            hf_token = os.environ.get('HUGGINGFACE_TOKEN')
            if not hf_token:
                raise ValueError("Please set HUGGINGFACE_TOKEN environment variable")
            
            # Login to Hugging Face
            login(token=hf_token)
            
            # Initialize model and tokenizer
            tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
            model = AutoModelForCausalLM.from_pretrained(
                MODEL_NAME,
                torch_dtype=torch.float16,
                device_map="auto"
            )
            
            # Create pipeline
            pipe = pipeline(
                "text-generation",
                model=model,
                tokenizer=tokenizer,
                max_new_tokens=512,
                temperature=0.1,
                device_map="auto"
            )
            
            llm = HuggingFacePipeline(pipeline=pipe)
            
            # Create QA chain
            prompt_template = """
            Context: {context}
            
            Based on the context above, please provide a clear and concise answer to the following question.
            If the information is not in the context, explicitly state so.
            
            Question: {question}
            """
            
            PROMPT = PromptTemplate(
                template=prompt_template,
                input_variables=["context", "question"]
            )
            
            self.qa_chain = RetrievalQA.from_chain_type(
                llm=llm,
                chain_type="stuff",
                retriever=self.vector_store.as_retriever(search_kwargs={"k": 4}),
                return_source_documents=True,
                chain_type_kwargs={"prompt": PROMPT}
            )
            
        except Exception as e:
            logger.error(f"Error initializing LLM: {str(e)}")
            raise

    def process_upload(self, files: List[gr.File]) -> str:
        """Process uploaded files and initialize/update the system."""
        if not files:
            return "Please select files to upload."
            
        try:
            current_files = len(os.listdir(self.upload_folder))
            if current_files + len(files) > self.max_files:
                return f"Maximum number of documents ({self.max_files}) exceeded"
            
            # Process each file
            processed_files = []
            new_documents = []
            for file in files:
                documents = self.process_file(file)
                new_documents.extend(documents)
                processed_files.append(os.path.basename(file.name))
            
            # Update vector store with new documents
            self.update_vector_store(new_documents)
            self.documents.extend(new_documents)
            
            # Initialize LLM if not already initialized
            if self.qa_chain is None:
                self.initialize_llm()
            
            return f"Successfully processed and initialized: {', '.join(processed_files)}"
            
        except Exception as e:
            return f"Error: {str(e)}"

    def generate_response(self, question: str) -> Dict:
        """Generate response for a given question."""
        if not self.qa_chain:
            return {"error": "System not initialized. Please upload documents first."}
            
        try:
            result = self.qa_chain({"query": question})
            
            response = {
                'answer': result['result'],
                'sources': []
            }
            
            for doc in result['source_documents']:
                source = {
                    'title': doc.metadata.get('source', 'Unknown'),
                    'content': doc.page_content[:200] + "..." if len(doc.page_content) > 200 else doc.page_content
                }
                response['sources'].append(source)
            
            return response
            
        except Exception as e:
            logger.error(f"Error generating response: {str(e)}")
            return {"error": str(e)}

# Initialize system
rag_system = RAGSystem()

def process_query(message: str, history: List) -> List:
    """Process user query and return updated history."""
    try:
        if not rag_system.qa_chain:
            return history + [(message, "Please upload documents first.")]
            
        response = rag_system.generate_response(message)
        if "error" in response:
            return history + [(message, f"Error: {response['error']}")]
            
        answer = response['answer']
        sources = set([source['title'] for source in response['sources']])
        if sources:
            answer += "\n\nπŸ“š Sources:\n" + "\n".join([f"β€’ {source}" for source in sources])
            
        return history + [(message, answer)]
    except Exception as e:
        return history + [(message, f"Error: {str(e)}")]

# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.HTML("""
        <div style="text-align: center; margin-bottom: 1rem;">
            <h1 style="color: #2d333a;">πŸ€– Easy RAG</h1>
            <p style="color: #4a5568;">A simple and powerful RAG system for your documents</p>
        </div>
    """)
    
    with gr.Row():
        # Sidebar for document upload
        with gr.Column(scale=1):
            with gr.Group():
                gr.HTML("""
                    <div style="padding: 1rem; border: 1px solid #e5e7eb; border-radius: 0.5rem; background-color: white;">
                    <h3 style="margin-top: 0;">πŸ“ Upload Documents</h3>
                """)
                file_output = gr.File(
                    file_count="multiple",
                    label="Select Files",
                    elem_id="file-upload"
                )
                gr.HTML("""
                    <div style="font-size: 0.8em; color: #666;">
                        <p>β€’ Maximum 5 files</p>
                        <p>β€’ 10MB per file</p>
                        <p>β€’ Supported: PDF, TXT, DOCX</p>
                    </div>
                """)
                system_output = gr.Textbox(
                    label="Status",
                    interactive=False
                )
                gr.HTML("</div>")
        
        # Main chat area
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(
                show_label=False,
                container=True,
                height=600,
                show_copy_button=True
            )
            
            with gr.Row():
                message = gr.Textbox(
                    placeholder="Ask a question about your documents...",
                    show_label=False,
                    container=False,
                    scale=8
                )
                clear = gr.Button("πŸ—‘οΈ", size="sm", scale=1)
    
    gr.HTML("""
        <div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 1rem;
                    background-color: #f8f9fa; border-radius: 10px;">
            <div style="margin-bottom: 1rem;">
                <h3 style="color: #2d333a;">πŸ” About Easy RAG</h3>
                <p style="color: #666; font-size: 0.9em;">
                    Powered by state-of-the-art AI technology:
                </p>
                <ul style="list-style: none; color: #666; font-size: 0.9em;">
                    <li>πŸ”Ή LLM: Llama-2-7b-chat-hf</li>
                    <li>πŸ”Ή Embeddings: multilingual-e5-large</li>
                    <li>πŸ”Ή Vector Store: FAISS</li>
                </ul>
            </div>
            <div style="border-top: 1px solid #ddd; padding-top: 1rem;">
                <p style="color: #666; font-size: 0.8em;">
                    Based on original work by <a href="https://www.linkedin.com/in/camilo-vega-169084b1/" 
                    target="_blank" style="color: #2196F3; text-decoration: none;">Camilo Vega</a>
                </p>
            </div>
        </div>
    """)

    # Add custom CSS
    demo.css = """
        .container {
            border-radius: 0.5rem;
            margin: 0.5rem;
        }
        #file-upload {
            margin-bottom: 1rem;
        }
    """
    
    # Set up event handlers
    file_output.upload(
        rag_system.process_upload,
        inputs=[file_output],
        outputs=[system_output]
    )
    
    message.submit(
        process_query,
        inputs=[message, chatbot],
        outputs=[chatbot]
    )
    
    clear.click(lambda: None, None, chatbot)

if __name__ == "__main__":
    demo.launch()