Spaces:
Paused
A newer version of the Streamlit SDK is available:
1.44.1
'[object Object]': null
{{ model_name if model_name else ( "SetFit Aspect Model for Aspect Based Sentiment Analysis" if is_aspect else ( "SetFit Polarity Model for Aspect Based Sentiment Analysis" if is_aspect is False else "SetFit Model for Text Classification"))}}
This is a SetFit model{% if dataset_id %} trained on the [{{ dataset_name if dataset_name else dataset_id }}](https://huggingface.co/datasets/{{ dataset_id }}) dataset{% endif %} that can be used for {{ task_name | default("Text Classification", true) }}.{% if st_id %} This SetFit model uses [{{ st_id }}](https://huggingface.co/{{ st_id }}) as the Sentence Transformer embedding model.{% endif %} A {{ head_class }} instance is used for classification.{% if is_absa %} In particular, this model is in charge of {{ "filtering aspect span candidates" if is_aspect else "classifying aspect polarities"}}.{% endif %}
The model has been trained using an efficient few-shot learning technique that involves:
Fine-tuning a Sentence Transformer with contrastive learning.
Training a classification head with features from the fine-tuned Sentence Transformer. {% if is_absa %} This model was trained within the context of a larger system for ABSA, which looks like so:
Use a spaCy model to select possible aspect span candidates.
{{ "" if is_aspect else "" }}Use {{ "this" if is_aspect else "a" }} SetFit model to filter these possible aspect span candidates.{{ "" if is_aspect else "" }}
{{ "" if not is_aspect else "" }}Use {{ "this" if not is_aspect else "a" }} SetFit model to classify the filtered aspect span candidates.{{ "" if not is_aspect else "" }} {% endif %}
Model Details
Model Description
- Model Type: SetFit
{% if st_id -%}
- Sentence Transformer body: [{{ st_id }}](https://huggingface.co/{{ st_id }}) {%- else -%} {%- endif %} {% if head_class -%}
- Classification head: a {{ head_class }} instance {%- else -%} {%- endif %} {%- if spacy_model %}
- spaCy Model: {{ spacy_model }} {%- endif %} {%- if aspect_model %}
- SetFitABSA Aspect Model: [{{ aspect_model }}](https://huggingface.co/{{ aspect_model }}) {%- endif %} {%- if polarity_model %}
- SetFitABSA Polarity Model: [{{ polarity_model }}](https://huggingface.co/{{ polarity_model }}) {%- endif %}
- Maximum Sequence Length: {{ model_max_length }} tokens
{% if num_classes -%}
- Number of Classes: {{ num_classes }} classes {%- else -%} {%- endif %} {% if dataset_id -%}
- Training Dataset: [{{ dataset_name if dataset_name else dataset_id }}](https://huggingface.co/datasets/{{ dataset_id }}) {%- else -%} {%- endif %} {% if language -%}
- Language{{"s" if language is not string and language | length > 1 else ""}}: {%- if language is string %} {{ language }} {%- else %} {% for lang in language -%} {{ lang }}{{ ", " if not loop.last else "" }} {%- endfor %} {%- endif %} {%- else -%} {%- endif %} {% if license -%}
- License: {{ license }} {%- else -%} {%- endif %}
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts {% if label_examples %}
Model Labels
{{ label_examples }}{% endif -%} {% if metrics_table %}
Evaluation
Metrics
{{ metrics_table }}{% endif %}
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference. {% if is_absa %}
from setfit import AbsaModel
# Download from the {{ hf_emoji }} Hub
model = AbsaModel.from_pretrained(
"{{ aspect_model }}",
"{{ polarity_model }}",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
{%- else %}
from setfit import SetFitModel
# Download from the {{ hf_emoji }} Hub
model = SetFitModel.from_pretrained("{{ model_id | default('setfit_model_id', true) }}")
# Run inference
preds = model("{{ predict_example | default("I loved the spiderman movie!", true) | replace('"', '\\"') }}")
{%- endif %}
Training Details
{% if train_set_metrics %}
Training Set Metrics
{{ train_set_metrics }}{% if train_set_sentences_per_label_list %} {{ train_set_sentences_per_label_list }}{% endif %}{% endif %}{% if hyperparameters %}
Training Hyperparameters
{% for name, value in hyperparameters.items() %}- {{ name }}: {{ value }} {% endfor %}{% endif %}{% if eval_lines %}
Training Results
{{ eval_lines }}{% if explain_bold_in_eval %}
- The bold row denotes the saved checkpoint.{% endif %}{% endif %}{% if co2_eq_emissions %}
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Carbon Emitted: {{ "%.3f"|format(co2_eq_emissions["emissions"] / 1000) }} kg of CO2
- Hours Used: {{ co2_eq_emissions["hours_used"] }} hours
Training Hardware
- On Cloud: {{ "Yes" if co2_eq_emissions["on_cloud"] else "No" }}
- GPU Model: {{ co2_eq_emissions["hardware_used"] or "No GPU used" }}
- CPU Model: {{ co2_eq_emissions["cpu_model"] }}
- RAM Size: {{ "%.2f"|format(co2_eq_emissions["ram_total_size"]) }} GB {% endif %}
Framework Versions
- Python: {{ version["python"] }}
- SetFit: {{ version["setfit"] }}
- Sentence Transformers: {{ version["sentence_transformers"] }} {%- if "spacy" in version %}
- spaCy: {{ version["spacy"] }} {%- endif %}
- Transformers: {{ version["transformers"] }}
- PyTorch: {{ version["torch"] }}
- Datasets: {{ version["datasets"] }}
- Tokenizers: {{ version["tokenizers"] }}
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}