Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import numpy as np | |
import matplotlib.colors as colors | |
import matplotlib.patches as patches | |
from PIL import Image | |
class BBox(object): | |
def __init__(self, bbox, image_data=None, xyxy=False, normalized=False): | |
""" | |
:param bbox: {'catrgory_id', 'bbox'} | |
:param input_image: ImageData object | |
:param xyxy: | |
:param normalized: | |
""" | |
self.data = bbox | |
self.image_data = image_data | |
if image_data is not None: | |
self.width = image_data.width | |
self.height = image_data.height | |
self.category_id = bbox['category_id'] | |
if xyxy: | |
x1, y1, x2, y2 = bbox['bbox'] | |
else: | |
x1, y1, w, h = bbox['bbox'] | |
x2, y2 = x1 + w, y1 + h | |
if not normalized: | |
x1, y1, x2, y2 = x1 / self.width, y1 / self.height, x2 / self.width, y2 / self.height | |
self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2 | |
def is_mol(self): | |
return self.category_id == 1 | |
def is_idt(self): | |
return self.category_id == 3 | |
def is_empty(self): | |
return abs(self.x2 - self.x1) <= 0.01 or abs(self.y2 - self.y1) <= 0.01 | |
def unnormalize(self): | |
return self.x1 * self.width, self.y1 * self.height, self.x2 * self.width, self.y2 * self.height | |
def image(self): | |
x1, y1, x2, y2 = self.unnormalize() | |
x1, y1, x2, y2 = max(int(x1), 0), max(int(y1), 0), min(int(x2), self.width), min(int(y2), self.height) | |
return self.image_data.image[y1:y2, x1:x2] | |
COLOR = {1: 'r', 2: 'g', 3: 'b', 4: 'y'} | |
CATEGORY = {1: 'Mol', 2: 'Txt', 3: 'Idt', 4: 'Sup'} | |
def draw(self, ax, color='r', text = None): | |
x1, y1, x2, y2 = self.unnormalize() | |
if color is None: | |
color = self.COLOR[self.category_id] | |
rect = patches.Rectangle( | |
(x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor=color, facecolor=colors.to_rgba(color, 0.2)) | |
text = f'{self.CATEGORY[self.category_id]}' | |
if text == 'Mol': | |
ax.text(x1 , y1-15, text, fontsize=10, bbox=dict(linewidth=0, facecolor='yellow', alpha=0.5)) | |
else: | |
ax.text(x1-45 , y1+10, text, fontsize=10, bbox=dict(linewidth=0, facecolor='yellow', alpha=0.5)) | |
ax.add_patch(rect) | |
return | |
def set_smiles(self, smiles, symbols,coords,edges, molfile=None, atoms=None, bonds=None): | |
self.data['smiles'] = smiles | |
self.data['symbols'] = symbols | |
self.data['coords'] = coords | |
self.data['edges'] = edges | |
if molfile: | |
self.data['molfile'] = molfile | |
if atoms: | |
self.data['atoms'] = atoms | |
if bonds: | |
self.data['bonds'] = bonds | |
def set_text(self, text): | |
self.data['text'] = text | |
def to_json(self): | |
return self.data | |
class Reaction(object): | |
def __init__(self, reaction=None, bboxes=None, image_data=None): | |
''' | |
if image_data is None, create from prediction | |
if image_data is not None, create from groundtruth | |
''' | |
self.reactants = [] | |
self.conditions = [] | |
self.products = [] | |
self.bboxes = [] | |
if reaction is not None: | |
for x in reaction['reactants']: | |
bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True) | |
self.bboxes.append(bbox) | |
self.reactants.append(len(self.bboxes) - 1) | |
for x in reaction['conditions']: | |
bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True) | |
self.bboxes.append(bbox) | |
self.conditions.append(len(self.bboxes) - 1) | |
for x in reaction['products']: | |
bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True) | |
self.bboxes.append(bbox) | |
self.products.append(len(self.bboxes) - 1) | |
def to_json(self): | |
return { | |
'reactants': [self.bboxes[i].to_json() for i in self.reactants], | |
'conditions': [self.bboxes[i].to_json() for i in self.conditions], | |
'products': [self.bboxes[i].to_json() for i in self.products] | |
} | |
def _deduplicate_bboxes(self, indices): | |
results = [] | |
for i, idx_i in enumerate(indices): | |
duplicate = False | |
for j, idx_j in enumerate(indices[:i]): | |
if get_iou(self.bboxes[idx_i], self.bboxes[idx_j]) > 0.6: | |
duplicate = True | |
break | |
if not duplicate: | |
results.append(idx_i) | |
return results | |
def deduplicate(self): | |
flags = [False] * len(self.bboxes) | |
bbox_list = self.reactants + self.products + self.conditions | |
for i, idx_i in enumerate(bbox_list): | |
if self.bboxes[idx_i].is_empty: | |
flags[idx_i] = True | |
continue | |
for idx_j in bbox_list[:i]: | |
if flags[idx_j] is False and get_iou(self.bboxes[idx_i], self.bboxes[idx_j]) > 0.6: | |
flags[idx_i] = True | |
break | |
self.reactants = [i for i in self.reactants if not flags[i]] | |
self.conditions = [i for i in self.conditions if not flags[i]] | |
self.products = [i for i in self.products if not flags[i]] | |
def schema(self, mol_only=False): | |
# Return reactants, conditions, and products. If mol_only is True, only include bboxes that are mol structures. | |
if mol_only: | |
reactants, conditions, products = [[idx for idx in indices if self.bboxes[idx].is_mol] | |
for indices in [self.reactants, self.conditions, self.products]] | |
# It would be unfair to compare two reactions if their reactants or products are empty after filtering. | |
# Setting them to the original ones in this case. | |
if len(reactants) == 0: | |
reactants = self.reactants | |
if len(products) == 0: | |
products = self.products | |
return reactants, conditions, products | |
else: | |
return self.reactants, self.conditions, self.products | |
def compare(self, other, mol_only=False, merge_condition=False, debug=False): | |
reactants1, conditions1, products1 = self.schema(mol_only) | |
reactants2, conditions2, products2 = other.schema(mol_only) | |
if debug: | |
print(reactants1, conditions1, products1, ';', reactants2, conditions2, products2) | |
if len(reactants1) + len(conditions1) + len(products1) == 0: | |
# schema is empty, always return False | |
return False | |
if len(reactants1) + len(conditions1) + len(products1) != len(reactants2) + len(conditions2) + len(products2): | |
return False | |
# Match use original index | |
match1, match2, scores = get_bboxes_match(self.bboxes, other.bboxes, iou_thres=0.5) | |
m_reactants, m_conditions, m_products = [[match1[i] for i in x] for x in [reactants1, conditions1, products1]] | |
if any([m == -1 for m in m_reactants + m_conditions + m_products]): | |
return False | |
if debug: | |
print(m_reactants, m_conditions, m_products, ';', reactants2, conditions2, products2) | |
if merge_condition: | |
return sorted(m_reactants + m_conditions) == sorted(reactants2 + conditions2) \ | |
and sorted(m_products) == sorted(products2) | |
else: | |
return sorted(m_reactants) == sorted(reactants2) and sorted(m_conditions) == sorted(conditions2) \ | |
and sorted(m_products) == sorted(products2) | |
def __eq__(self, other): | |
# Exact matching of two reactions | |
return self.compare(other) | |
def draw(self, ax): | |
for i in self.reactants: | |
self.bboxes[i].draw(ax, color='r') | |
for i in self.conditions: | |
self.bboxes[i].draw(ax, color='g') | |
for i in self.products: | |
self.bboxes[i].draw(ax, color='b') | |
return | |
class ReactionSet(object): | |
def __init__(self, reactions, bboxes=None, image_data=None): | |
self.reactions = [Reaction(reaction, bboxes, image_data) for reaction in reactions] | |
def __len__(self): | |
return len(self.reactions) | |
def __iter__(self): | |
return iter(self.reactions) | |
def __getitem__(self, item): | |
return self.reactions[item] | |
def deduplicate(self): | |
results = [] | |
for reaction in self.reactions: | |
if any(r == reaction for r in results): | |
continue | |
if len(reaction.reactants) < 1 or len(reaction.products) < 1: | |
continue | |
results.append(reaction) | |
self.reactions = results | |
def to_json(self): | |
return [r.to_json() for r in self.reactions] | |
class ImageData(object): | |
def __init__(self, data=None, predictions=None, image_file=None, image=None): | |
self.width, self.height = None, None | |
if data: | |
self.file_name = data['file_name'] | |
self.width = data['width'] | |
self.height = data['height'] | |
if image_file: | |
self.image = cv2.imread(image_file) | |
self.height, self.width, _ = self.image.shape | |
if image is not None: | |
if not isinstance(image, np.ndarray): | |
image = np.asarray(image) | |
self.image = image | |
self.height, self.width, _ = self.image.shape | |
if data and 'bboxes' in data: | |
self.gold_bboxes = [BBox(bbox, self, xyxy=False, normalized=False) for bbox in data['bboxes']] | |
if predictions is not None: | |
self.pred_bboxes = [BBox(bbox, self, xyxy=True, normalized=True) for bbox in predictions] | |
def draw_gold(self, ax, image=None): | |
if image is not None: | |
ax.imshow(image) | |
for i, b in enumerate(self.gold_bboxes): | |
b.draw(ax, color = None) | |
def draw_prediction(self, ax, image=None): | |
if image is not None: | |
ax.imshow(image) | |
for i, b in enumerate(self.pred_bboxes): | |
b.draw(ax, color = None) | |
class ReactionImageData(ImageData): | |
def __init__(self, data=None, predictions=None, image_file=None, image=None): | |
super().__init__(data=data, image_file=image_file, image=image) | |
if data and 'reactions' in data: | |
self.gold_reactions = ReactionSet(data['reactions'], self.gold_bboxes, image_data=self) | |
if predictions is not None: | |
self.pred_reactions = ReactionSet(predictions, image_data=self) | |
self.pred_reactions.deduplicate() | |
def evaluate(self, mol_only=False, merge_condition=False, debug=False): | |
gold_total = len(self.gold_reactions) | |
gold_hit = [False] * gold_total | |
pred_total = len(self.pred_reactions) | |
pred_hit = [False] * pred_total | |
for i, ri in enumerate(self.gold_reactions): | |
for j, rj in enumerate(self.pred_reactions): | |
if gold_hit[i] and pred_hit[j]: | |
continue | |
if ri.compare(rj, mol_only, merge_condition, debug): | |
gold_hit[i] = True | |
pred_hit[j] = True | |
return gold_hit, pred_hit | |
class CorefImageData(ImageData): | |
def __init__(self, data=None, predictions=None, image_file=None, image=None): | |
super().__init__(data=data, predictions = predictions, image_file=image_file, image=image) | |
if data and 'corefs' in data: | |
self.gold_corefs = data['corefs'] | |
def evaluate(self): | |
#for every bbox in self.gold_bboxes, match with highest iou in self.pred_bboxes | |
#a true hit is defined as follows: suppose a pair (i, j) is a coref. then if highest_iou(j) follows | |
#highest_iou(i) in pred_bboxes, it is a hit. | |
#total number of predictions is number of bboxes in pred/2. | |
#precision = TP/number of predictions | |
#recall = TP/number of gt pairs | |
if hasattr(self, "pred_bboxes"): | |
hits = 0 | |
num_preds = 0 | |
for pred in self.pred_bboxes: | |
if pred.category_id == 3: | |
num_preds+=1 | |
matches = {} | |
for gold in self.gold_bboxes: | |
highest_iou = 0 | |
highest_index = -1 | |
for i, pred in enumerate(self.pred_bboxes): | |
iou = get_iou(gold, pred) | |
if iou> highest_iou: | |
highest_iou = iou | |
highest_index = i | |
if highest_iou > 0.3 and gold.category_id == 1: | |
matches[gold] = highest_index | |
else: | |
matches[gold]=highest_index | |
for coref_pair in self.gold_corefs: | |
mol = self.gold_bboxes[coref_pair[0]] | |
idx = self.gold_bboxes[coref_pair[1]] | |
if mol in matches and idx in matches: | |
all_ids = True | |
if matches[mol] < matches[idx]: | |
for counter in range(matches[mol]+1, matches[idx], 1): | |
if self.pred_bboxes[counter].category_id != 3: | |
all_ids = False | |
if all_ids: | |
hits+=1 | |
return hits, len(self.gold_corefs), num_preds | |
return 0, 0, 0 | |
def draw_gold(self, ax, image=None): | |
if image is not None: | |
ax.imshow(image) | |
counter_dict = {} | |
counter = 0 | |
for pair in self.gold_corefs: | |
mol, idt = pair | |
if mol in counter_dict: | |
xmin, ymin, xmax, ymax = self.gold_bboxes[idt].unnormalize() | |
ax.text(xmin - 50, ymin+ 60, str(counter_dict[mol]), fontsize=20, bbox=dict(facecolor='purple', alpha=0.5)) | |
else: | |
counter+=1 | |
counter_dict[mol] = counter | |
xmin, ymin, xmax, ymax = self.gold_bboxes[mol].unnormalize() | |
ax.text(xmin - 50, ymin+ 60, str(counter), fontsize=20, bbox=dict(facecolor='purple', alpha=0.5)) | |
xmin, ymin, xmax, ymax = self.gold_bboxes[idt].unnormalize() | |
ax.text(xmin - 50, ymin+ 60, str(counter), fontsize=20, bbox=dict(facecolor='purple', alpha=0.5)) | |
for b in self.gold_bboxes: | |
b.draw(ax) | |
def draw_prediction(self, ax, image=None): | |
if image is not None: | |
ax.imshow(image) | |
counter = 0 | |
colours = ['#648fff', '#785ef0','#dc267f', '#fe6100','#ffb000','r', 'b', 'g', 'k', 'c', 'm', 'y', 'r', 'b', 'g', 'k', 'c', 'm', 'y', 'r', 'b', 'g', 'k', 'c', 'm', 'y'] | |
colorcounter = -1 | |
for i, b in enumerate(self.pred_bboxes): | |
if (b.category_id == 1 or b.category_id == 2): | |
counter += 1 | |
colorcounter += 1 | |
b.draw(ax, color = colours[colorcounter%len(colours)]) | |
elif b.category_id == 3: | |
b.draw(ax, color = colours[colorcounter%len(colours)]) | |
def deduplicate_bboxes(bboxes): | |
results = [] | |
for i in range(len(bboxes)): | |
duplicate = False | |
for j in range(i): | |
if get_iou(bboxes[i], bboxes[j]) > 0.9: | |
duplicate = True | |
break | |
if not duplicate: | |
results.append(bboxes[i]) | |
return results | |
def get_iou(bb1, bb2): | |
"""Calculate the Intersection over Union (IoU) of two bounding boxes.""" | |
bb1 = {'x1': bb1.x1, 'y1': bb1.y1, 'x2': bb1.x2, 'y2': bb1.y2} | |
bb2 = {'x1': bb2.x1, 'y1': bb2.y1, 'x2': bb2.x2, 'y2': bb2.y2} | |
assert bb1['x1'] < bb1['x2'] | |
assert bb1['y1'] < bb1['y2'] | |
assert bb2['x1'] < bb2['x2'] | |
assert bb2['y1'] < bb2['y2'] | |
# determine the coordinates of the intersection rectangle | |
x_left = max(bb1['x1'], bb2['x1']) | |
y_top = max(bb1['y1'], bb2['y1']) | |
x_right = min(bb1['x2'], bb2['x2']) | |
y_bottom = min(bb1['y2'], bb2['y2']) | |
if x_right < x_left or y_bottom < y_top: | |
return 0.0 | |
# The intersection of two axis-aligned bounding boxes is always an | |
# axis-aligned bounding box | |
intersection_area = (x_right - x_left) * (y_bottom - y_top) | |
# compute the area of both AABBs | |
bb1_area = (bb1['x2'] - bb1['x1']) * (bb1['y2'] - bb1['y1']) | |
bb2_area = (bb2['x2'] - bb2['x1']) * (bb2['y2'] - bb2['y1']) | |
# compute the intersection over union by taking the intersection | |
# area and dividing it by the sum of prediction + ground-truth | |
# areas - the interesection area | |
iou = intersection_area / float(bb1_area + bb2_area - intersection_area) | |
assert iou >= 0.0 | |
assert iou <= 1.0 | |
return iou | |
def get_bboxes_match(bboxes1, bboxes2, iou_thres=0.5, match_category=False): | |
"""Find the match between two sets of bboxes. Each bbox is matched with a bbox with maximum overlap | |
(at least above iou_thres). -1 if a bbox does not have a match.""" | |
scores = np.zeros((len(bboxes1), len(bboxes2))) | |
for i, bbox1 in enumerate(bboxes1): | |
for j, bbox2 in enumerate(bboxes2): | |
if match_category and bbox1.category_id != bbox2.category_id: | |
scores[i, j] = 0 | |
else: | |
scores[i, j] = get_iou(bbox1, bbox2) | |
match1 = scores.argmax(axis=1) | |
for i in range(len(match1)): | |
if scores[i, match1[i]] < iou_thres: | |
match1[i] = -1 | |
match2 = scores.argmax(axis=0) | |
for j in range(len(match2)): | |
if scores[match2[j], j] < iou_thres: | |
match2[j] = -1 | |
return match1, match2, scores | |
def deduplicate_reactions(reactions): | |
pred_reactions = ReactionSet(reactions) | |
for r in pred_reactions: | |
r.deduplicate() | |
pred_reactions.deduplicate() | |
return pred_reactions.to_json() | |
def postprocess_reactions(reactions, image_file=None, image=None, molscribe=None, ocr=None, batch_size=32): | |
image_data = ReactionImageData(predictions=reactions, image_file=image_file, image=image) | |
pred_reactions = image_data.pred_reactions | |
for r in pred_reactions: | |
r.deduplicate() | |
pred_reactions.deduplicate() | |
if molscribe: | |
bbox_images, bbox_indices = [], [] | |
for i, reaction in enumerate(pred_reactions): | |
for j, bbox in enumerate(reaction.bboxes): | |
if bbox.is_mol: | |
bbox_images.append(bbox.image()) | |
bbox_indices.append((i, j)) | |
if len(bbox_images) > 0: | |
predictions = molscribe.predict_images(bbox_images, return_atoms_bonds=True, batch_size=batch_size) | |
for (i, j), pred in zip(bbox_indices, predictions): | |
pred_reactions[i].bboxes[j].set_smiles(pred['smiles'],pred["symbols"], pred["coords"],pred["edges"],pred['molfile'],pred['atoms'], pred['bonds']) | |
#deduplicated[i].set_smiles(pred['smiles'],pred['oringinal_coords'],pred['original_symbols'],pred['orignal_edges']) | |
if ocr: | |
for reaction in pred_reactions: | |
for bbox in reaction.bboxes: | |
if not bbox.is_mol: | |
text = ocr.readtext(bbox.image(), detail=0) | |
bbox.set_text(text) | |
return pred_reactions.to_json() | |
def postprocess_bboxes(bboxes, image = None, molscribe = None, batch_size = 32): | |
image_d = ImageData(image = image) | |
bbox_objects = [BBox(bbox = bbox, image_data = image_d, xyxy = True, normalized = True) for bbox in bboxes] | |
bbox_objects_no_empty = [bbox for bbox in bbox_objects if not bbox.is_empty] | |
#deduplicate | |
deduplicated = deduplicate_bboxes(bbox_objects_no_empty) | |
if molscribe: | |
bbox_images, bbox_indices = [], [] | |
for i, bbox in enumerate(deduplicated): | |
if bbox.is_mol: | |
bbox_images.append(bbox.image()) | |
bbox_indices.append(i) | |
if len(bbox_images) > 0: | |
predictions = molscribe.predict_images(bbox_images, return_atoms_bonds=True, batch_size = batch_size) | |
for i, pred in zip(bbox_indices, predictions): | |
#deduplicated[i].set_smiles(pred['smiles'], pred["original_symbols"],pred['molfile'],pred['atoms'], pred['bonds']) | |
deduplicated[i].set_smiles(pred['smiles'],pred["symbols"], pred["coords"],pred["edges"],pred['molfile'],pred['atoms'], pred['bonds']) | |
return [bbox.to_json() for bbox in deduplicated] | |
def postprocess_coref_results(bboxes, image, molscribe = None, ocr = None, batch_size = 32): | |
image_d = ImageData(image = cv2.resize(np.asarray(image), None, fx=3, fy=3)) | |
bbox_objects = [BBox(bbox = bbox, image_data = image_d, xyxy = True, normalized = True) for bbox in bboxes['bboxes']] | |
if molscribe: | |
bbox_images, bbox_indices = [], [] | |
for i, bbox in enumerate(bbox_objects): | |
if bbox.is_mol: | |
bbox_images.append(bbox.image()) | |
bbox_indices.append(i) | |
if len(bbox_images) > 0: | |
predictions = molscribe.predict_images(bbox_images, return_atoms_bonds=True, batch_size = batch_size) | |
for i, pred in zip(bbox_indices, predictions): | |
bbox_objects[i].set_smiles(pred['smiles'],pred["symbols"], pred["coords"],pred["edges"],pred['molfile'],pred['atoms'], pred['bonds']) | |
if ocr: | |
for bbox in bbox_objects: | |
if bbox.is_idt: | |
text = ocr.readtext(bbox.image(), detail = 0) | |
bbox.set_text(text) | |
return {'bboxes': [bbox.to_json() for bbox in bbox_objects], 'corefs': bboxes['corefs']} | |