File size: 21,628 Bytes
1f516b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import os
import cv2
import numpy as np
import matplotlib.colors as colors
import matplotlib.patches as patches
from PIL import Image


class BBox(object):

    def __init__(self, bbox, image_data=None, xyxy=False, normalized=False):
        """
        :param bbox: {'catrgory_id', 'bbox'}
        :param input_image: ImageData object
        :param xyxy:
        :param normalized:
        """
        self.data = bbox
        self.image_data = image_data
        if image_data is not None:
            self.width = image_data.width
            self.height = image_data.height
        self.category_id = bbox['category_id']
        if xyxy:
            x1, y1, x2, y2 = bbox['bbox']
        else:
            x1, y1, w, h = bbox['bbox']
            x2, y2 = x1 + w, y1 + h
        if not normalized:
            x1, y1, x2, y2 = x1 / self.width, y1 / self.height, x2 / self.width, y2 / self.height
        self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2

    @property
    def is_mol(self):
        return self.category_id == 1

    @property
    def is_idt(self):
        return self.category_id == 3

    @property
    def is_empty(self):
        return abs(self.x2 - self.x1) <= 0.01 or abs(self.y2 - self.y1) <= 0.01

    def unnormalize(self):
        return self.x1 * self.width, self.y1 * self.height, self.x2 * self.width, self.y2 * self.height

    def image(self):
        x1, y1, x2, y2 = self.unnormalize()
        x1, y1, x2, y2 = max(int(x1), 0), max(int(y1), 0), min(int(x2), self.width), min(int(y2), self.height)
        return self.image_data.image[y1:y2, x1:x2]

    COLOR = {1: 'r', 2: 'g', 3: 'b', 4: 'y'}
    CATEGORY = {1: 'Mol', 2: 'Txt', 3: 'Idt', 4: 'Sup'}

    def draw(self, ax, color='r', text = None):
        x1, y1, x2, y2 = self.unnormalize()
        if color is None:
            color = self.COLOR[self.category_id]
        rect = patches.Rectangle(
            (x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor=color, facecolor=colors.to_rgba(color, 0.2))
        text = f'{self.CATEGORY[self.category_id]}'
        if text == 'Mol':
            ax.text(x1 , y1-15, text, fontsize=10, bbox=dict(linewidth=0, facecolor='yellow', alpha=0.5))
        else:
            ax.text(x1-45 , y1+10, text, fontsize=10, bbox=dict(linewidth=0, facecolor='yellow', alpha=0.5))
        ax.add_patch(rect)
        return

    def set_smiles(self, smiles, symbols,coords,edges,  molfile=None, atoms=None, bonds=None):
        self.data['smiles'] = smiles
        self.data['symbols'] = symbols
        self.data['coords'] = coords
        self.data['edges'] = edges
        if molfile:
            self.data['molfile'] = molfile
        
        if atoms:
            self.data['atoms'] = atoms
        if bonds:
            self.data['bonds'] = bonds

    def set_text(self, text):
        self.data['text'] = text

    def to_json(self):
        return self.data


class Reaction(object):

    def __init__(self, reaction=None, bboxes=None, image_data=None):
        '''
        if image_data is None, create from prediction
        if image_data is not None, create from groundtruth
        '''
        self.reactants = []
        self.conditions = []
        self.products = []
        self.bboxes = []
        if reaction is not None:
            for x in reaction['reactants']:
                bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True)
                self.bboxes.append(bbox)
                self.reactants.append(len(self.bboxes) - 1)
            for x in reaction['conditions']:
                bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True)
                self.bboxes.append(bbox)
                self.conditions.append(len(self.bboxes) - 1)
            for x in reaction['products']:
                bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True)
                self.bboxes.append(bbox)
                self.products.append(len(self.bboxes) - 1)

    def to_json(self):
        return {
            'reactants': [self.bboxes[i].to_json() for i in self.reactants],
            'conditions': [self.bboxes[i].to_json() for i in self.conditions],
            'products': [self.bboxes[i].to_json() for i in self.products]
        }

    def _deduplicate_bboxes(self, indices):
        results = []
        for i, idx_i in enumerate(indices):
            duplicate = False
            for j, idx_j in enumerate(indices[:i]):
                if get_iou(self.bboxes[idx_i], self.bboxes[idx_j]) > 0.6:
                    duplicate = True
                    break
            if not duplicate:
                results.append(idx_i)
        return results

    def deduplicate(self):
        flags = [False] * len(self.bboxes)
        bbox_list = self.reactants + self.products + self.conditions
        for i, idx_i in enumerate(bbox_list):
            if self.bboxes[idx_i].is_empty:
                flags[idx_i] = True
                continue
            for idx_j in bbox_list[:i]:
                if flags[idx_j] is False and get_iou(self.bboxes[idx_i], self.bboxes[idx_j]) > 0.6:
                    flags[idx_i] = True
                    break
        self.reactants = [i for i in self.reactants if not flags[i]]
        self.conditions = [i for i in self.conditions if not flags[i]]
        self.products = [i for i in self.products if not flags[i]]

    def schema(self, mol_only=False):
        # Return reactants, conditions, and products. If mol_only is True, only include bboxes that are mol structures.
        if mol_only:
            reactants, conditions, products = [[idx for idx in indices if self.bboxes[idx].is_mol]
                                               for indices in [self.reactants, self.conditions, self.products]]
            # It would be unfair to compare two reactions if their reactants or products are empty after filtering.
            # Setting them to the original ones in this case.
            if len(reactants) == 0:
                reactants = self.reactants
            if len(products) == 0:
                products = self.products
            return reactants, conditions, products
        else:
            return self.reactants, self.conditions, self.products

    def compare(self, other, mol_only=False, merge_condition=False, debug=False):
        reactants1, conditions1, products1 = self.schema(mol_only)
        reactants2, conditions2, products2 = other.schema(mol_only)
        if debug:
            print(reactants1, conditions1, products1, ';', reactants2, conditions2, products2)
        if len(reactants1) + len(conditions1) + len(products1) == 0:
            # schema is empty, always return False
            return False
        if len(reactants1) + len(conditions1) + len(products1) != len(reactants2) + len(conditions2) + len(products2):
            return False
        # Match use original index
        match1, match2, scores = get_bboxes_match(self.bboxes, other.bboxes, iou_thres=0.5)
        m_reactants, m_conditions, m_products = [[match1[i] for i in x] for x in [reactants1, conditions1, products1]]
        if any([m == -1 for m in m_reactants + m_conditions + m_products]):
            return False
        if debug:
            print(m_reactants, m_conditions, m_products, ';', reactants2, conditions2, products2)
        if merge_condition:
            return sorted(m_reactants + m_conditions) == sorted(reactants2 + conditions2) \
                   and sorted(m_products) == sorted(products2)
        else:
            return sorted(m_reactants) == sorted(reactants2) and sorted(m_conditions) == sorted(conditions2) \
                   and sorted(m_products) == sorted(products2)

    def __eq__(self, other):
        # Exact matching of two reactions
        return self.compare(other)

    def draw(self, ax):
        for i in self.reactants:
            self.bboxes[i].draw(ax, color='r')
        for i in self.conditions:
            self.bboxes[i].draw(ax, color='g')
        for i in self.products:
            self.bboxes[i].draw(ax, color='b')
        return


class ReactionSet(object):

    def __init__(self, reactions, bboxes=None, image_data=None):
        self.reactions = [Reaction(reaction, bboxes, image_data) for reaction in reactions]

    def __len__(self):
        return len(self.reactions)

    def __iter__(self):
        return iter(self.reactions)

    def __getitem__(self, item):
        return self.reactions[item]

    def deduplicate(self):
        results = []
        for reaction in self.reactions:
            if any(r == reaction for r in results):
                continue
            if len(reaction.reactants) < 1 or len(reaction.products) < 1:
                continue
            results.append(reaction)
        self.reactions = results

    def to_json(self):
        return [r.to_json() for r in self.reactions]


class ImageData(object):

    def __init__(self, data=None, predictions=None, image_file=None, image=None):
        self.width, self.height = None, None
        if data:
            self.file_name = data['file_name']
            self.width = data['width']
            self.height = data['height']
        if image_file:
            self.image = cv2.imread(image_file)
            self.height, self.width, _ = self.image.shape
        if image is not None:
            if not isinstance(image, np.ndarray):
                image = np.asarray(image)
            self.image = image
            self.height, self.width, _ = self.image.shape
        if data and 'bboxes' in data:
            self.gold_bboxes = [BBox(bbox, self, xyxy=False, normalized=False) for bbox in data['bboxes']]
        if predictions is not None:
            self.pred_bboxes = [BBox(bbox, self, xyxy=True, normalized=True) for bbox in predictions]

    def draw_gold(self, ax, image=None):
        if image is not None:
            ax.imshow(image)
        for i, b in enumerate(self.gold_bboxes):
            b.draw(ax, color = None)

    def draw_prediction(self, ax, image=None):
        if image is not None:
            ax.imshow(image)
        for i, b in enumerate(self.pred_bboxes):
            b.draw(ax, color = None)


class ReactionImageData(ImageData):

    def __init__(self, data=None, predictions=None, image_file=None, image=None):
        super().__init__(data=data, image_file=image_file, image=image)
        if data and 'reactions' in data:
            self.gold_reactions = ReactionSet(data['reactions'], self.gold_bboxes, image_data=self)
        if predictions is not None:
            self.pred_reactions = ReactionSet(predictions, image_data=self)
            self.pred_reactions.deduplicate()

    def evaluate(self, mol_only=False, merge_condition=False, debug=False):
        gold_total = len(self.gold_reactions)
        gold_hit = [False] * gold_total
        pred_total = len(self.pred_reactions)
        pred_hit = [False] * pred_total
        for i, ri in enumerate(self.gold_reactions):
            for j, rj in enumerate(self.pred_reactions):
                if gold_hit[i] and pred_hit[j]:
                    continue
                if ri.compare(rj, mol_only, merge_condition, debug):
                    gold_hit[i] = True
                    pred_hit[j] = True
        return gold_hit, pred_hit

class CorefImageData(ImageData):

    def __init__(self, data=None, predictions=None, image_file=None, image=None):
        super().__init__(data=data, predictions = predictions, image_file=image_file, image=image)
        if data and 'corefs' in data:
            self.gold_corefs = data['corefs']
    
    def evaluate(self):
        #for every bbox in self.gold_bboxes, match with highest iou in self.pred_bboxes
        #a true hit is defined as follows: suppose a pair (i, j) is a coref. then if highest_iou(j) follows
        #highest_iou(i) in pred_bboxes, it is a hit. 
        #total number of predictions is number of bboxes in pred/2.
        #precision = TP/number of predictions
        #recall = TP/number of gt pairs

        if hasattr(self, "pred_bboxes"):
            hits = 0
            num_preds = 0
            for pred in self.pred_bboxes:
                if pred.category_id == 3:
                    num_preds+=1
            matches = {}
            for gold in self.gold_bboxes:
                highest_iou = 0
                highest_index = -1
                for i, pred in enumerate(self.pred_bboxes):
                    iou = get_iou(gold, pred)
                    if iou> highest_iou:
                        highest_iou = iou
                        highest_index = i
                if highest_iou > 0.3 and gold.category_id == 1:
                    matches[gold] = highest_index
                else:
                    matches[gold]=highest_index
            for coref_pair in self.gold_corefs:
                mol = self.gold_bboxes[coref_pair[0]]
                idx = self.gold_bboxes[coref_pair[1]]

                if mol in matches and idx in matches: 
                    all_ids = True
                    if matches[mol] < matches[idx]:
                        for counter in range(matches[mol]+1, matches[idx], 1):
                            if self.pred_bboxes[counter].category_id != 3:
                                all_ids = False
                        if all_ids:
                            hits+=1
            return hits, len(self.gold_corefs), num_preds
        
        return 0, 0, 0

    def draw_gold(self, ax, image=None):
        if image is not None:
            ax.imshow(image)
        counter_dict = {}
        counter = 0

        for pair in self.gold_corefs:
            mol, idt = pair 
            if mol in counter_dict:
                xmin, ymin, xmax, ymax = self.gold_bboxes[idt].unnormalize()
                ax.text(xmin - 50, ymin+ 60, str(counter_dict[mol]), fontsize=20, bbox=dict(facecolor='purple', alpha=0.5))
                
            else:
                counter+=1
                counter_dict[mol] = counter
                xmin, ymin, xmax, ymax = self.gold_bboxes[mol].unnormalize() 
                ax.text(xmin - 50, ymin+ 60, str(counter), fontsize=20, bbox=dict(facecolor='purple', alpha=0.5))
                xmin, ymin, xmax, ymax = self.gold_bboxes[idt].unnormalize() 
                ax.text(xmin - 50, ymin+ 60, str(counter), fontsize=20, bbox=dict(facecolor='purple', alpha=0.5)) 
        for b in self.gold_bboxes:
            b.draw(ax)

    def draw_prediction(self, ax, image=None):
        if image is not None:
            ax.imshow(image)
        counter = 0
        colours = ['#648fff', '#785ef0','#dc267f', '#fe6100','#ffb000','r', 'b', 'g', 'k', 'c', 'm', 'y', 'r', 'b', 'g', 'k', 'c', 'm', 'y', 'r', 'b', 'g', 'k', 'c', 'm', 'y']
        colorcounter = -1
        for i, b in enumerate(self.pred_bboxes):
            if (b.category_id == 1 or b.category_id == 2):
                counter += 1
                colorcounter += 1
                b.draw(ax, color = colours[colorcounter%len(colours)]) 
            elif b.category_id == 3:
                b.draw(ax, color = colours[colorcounter%len(colours)]) 



def deduplicate_bboxes(bboxes):
    results = []
    for i in range(len(bboxes)):
        duplicate = False
        for j in range(i):
            if get_iou(bboxes[i], bboxes[j]) > 0.9:
                duplicate = True
                break
        if not duplicate:
            results.append(bboxes[i])
    return results

def get_iou(bb1, bb2):
    """Calculate the Intersection over Union (IoU) of two bounding boxes."""
    bb1 = {'x1': bb1.x1, 'y1': bb1.y1, 'x2': bb1.x2, 'y2': bb1.y2}
    bb2 = {'x1': bb2.x1, 'y1': bb2.y1, 'x2': bb2.x2, 'y2': bb2.y2}

    assert bb1['x1'] < bb1['x2']
    assert bb1['y1'] < bb1['y2']
    assert bb2['x1'] < bb2['x2']
    assert bb2['y1'] < bb2['y2']

    # determine the coordinates of the intersection rectangle
    x_left = max(bb1['x1'], bb2['x1'])
    y_top = max(bb1['y1'], bb2['y1'])
    x_right = min(bb1['x2'], bb2['x2'])
    y_bottom = min(bb1['y2'], bb2['y2'])

    if x_right < x_left or y_bottom < y_top:
        return 0.0

    # The intersection of two axis-aligned bounding boxes is always an
    # axis-aligned bounding box
    intersection_area = (x_right - x_left) * (y_bottom - y_top)

    # compute the area of both AABBs
    bb1_area = (bb1['x2'] - bb1['x1']) * (bb1['y2'] - bb1['y1'])
    bb2_area = (bb2['x2'] - bb2['x1']) * (bb2['y2'] - bb2['y1'])

    # compute the intersection over union by taking the intersection
    # area and dividing it by the sum of prediction + ground-truth
    # areas - the interesection area
    iou = intersection_area / float(bb1_area + bb2_area - intersection_area)
    assert iou >= 0.0
    assert iou <= 1.0
    return iou


def get_bboxes_match(bboxes1, bboxes2, iou_thres=0.5, match_category=False):
    """Find the match between two sets of bboxes. Each bbox is matched with a bbox with maximum overlap
    (at least above iou_thres). -1 if a bbox does not have a match."""
    scores = np.zeros((len(bboxes1), len(bboxes2)))
    for i, bbox1 in enumerate(bboxes1):
        for j, bbox2 in enumerate(bboxes2):
            if match_category and bbox1.category_id != bbox2.category_id:
                scores[i, j] = 0
            else:
                scores[i, j] = get_iou(bbox1, bbox2)
    match1 = scores.argmax(axis=1)
    for i in range(len(match1)):
        if scores[i, match1[i]] < iou_thres:
            match1[i] = -1
    match2 = scores.argmax(axis=0)
    for j in range(len(match2)):
        if scores[match2[j], j] < iou_thres:
            match2[j] = -1
    return match1, match2, scores


def deduplicate_reactions(reactions):
    pred_reactions = ReactionSet(reactions)
    for r in pred_reactions:
        r.deduplicate()
    pred_reactions.deduplicate()
    return pred_reactions.to_json()


def postprocess_reactions(reactions, image_file=None, image=None, molscribe=None, ocr=None, batch_size=32):
    image_data = ReactionImageData(predictions=reactions, image_file=image_file, image=image)
    pred_reactions = image_data.pred_reactions
    for r in pred_reactions:
        r.deduplicate()
    pred_reactions.deduplicate()
    if molscribe:
        bbox_images, bbox_indices = [], []
        for i, reaction in enumerate(pred_reactions):
            for j, bbox in enumerate(reaction.bboxes):
                if bbox.is_mol:
                    bbox_images.append(bbox.image())
                    bbox_indices.append((i, j))
        if len(bbox_images) > 0:
            predictions = molscribe.predict_images(bbox_images, return_atoms_bonds=True, batch_size=batch_size)

            for (i, j), pred in zip(bbox_indices, predictions):
                pred_reactions[i].bboxes[j].set_smiles(pred['smiles'],pred["symbols"], pred["coords"],pred["edges"],pred['molfile'],pred['atoms'], pred['bonds'])
                #deduplicated[i].set_smiles(pred['smiles'],pred['oringinal_coords'],pred['original_symbols'],pred['orignal_edges'])
    if ocr:
        for reaction in pred_reactions:
            for bbox in reaction.bboxes:
                if not bbox.is_mol:
                    text = ocr.readtext(bbox.image(), detail=0)
                    bbox.set_text(text)
    return pred_reactions.to_json()

def postprocess_bboxes(bboxes, image = None, molscribe = None, batch_size = 32):
    image_d = ImageData(image = image)
    bbox_objects = [BBox(bbox = bbox, image_data = image_d, xyxy = True, normalized = True) for bbox in bboxes]
    bbox_objects_no_empty = [bbox for bbox in bbox_objects if not bbox.is_empty]
    #deduplicate
    deduplicated = deduplicate_bboxes(bbox_objects_no_empty)

    if molscribe:
        bbox_images, bbox_indices = [], []

        for i, bbox in enumerate(deduplicated):
            if bbox.is_mol:
                bbox_images.append(bbox.image())
                bbox_indices.append(i)
        
        if len(bbox_images) > 0:
            predictions = molscribe.predict_images(bbox_images, return_atoms_bonds=True, batch_size = batch_size)

            for i, pred in zip(bbox_indices, predictions):
                #deduplicated[i].set_smiles(pred['smiles'], pred["original_symbols"],pred['molfile'],pred['atoms'], pred['bonds'])
                deduplicated[i].set_smiles(pred['smiles'],pred["symbols"], pred["coords"],pred["edges"],pred['molfile'],pred['atoms'], pred['bonds'])
    return [bbox.to_json() for bbox in deduplicated]

def postprocess_coref_results(bboxes, image, molscribe = None, ocr = None, batch_size = 32):
    image_d = ImageData(image = cv2.resize(np.asarray(image), None, fx=3, fy=3))
    bbox_objects = [BBox(bbox = bbox, image_data = image_d, xyxy = True, normalized = True) for bbox in bboxes['bboxes']]
    if molscribe:
        
        bbox_images, bbox_indices = [], []

        for i, bbox in enumerate(bbox_objects):
            if bbox.is_mol:
                bbox_images.append(bbox.image())
                bbox_indices.append(i)
        
        if len(bbox_images) > 0:
            predictions = molscribe.predict_images(bbox_images, return_atoms_bonds=True, batch_size = batch_size)

            for i, pred in zip(bbox_indices, predictions):
                bbox_objects[i].set_smiles(pred['smiles'],pred["symbols"], pred["coords"],pred["edges"],pred['molfile'],pred['atoms'], pred['bonds'])
    if ocr: 
        for bbox in bbox_objects:
            if bbox.is_idt:
                text = ocr.readtext(bbox.image(), detail = 0)
                bbox.set_text(text)
    
    return {'bboxes': [bbox.to_json() for bbox in bbox_objects], 'corefs': bboxes['corefs']}