ChemEagle_API / main.py
CYF200127's picture
Update main.py
1abb075 verified
import sys
import torch
import json
from chemietoolkit import ChemIEToolkit,utils
import cv2
from openai import AzureOpenAI
import numpy as np
from PIL import Image
import json
from get_molecular_agent import process_reaction_image_with_multiple_products_and_text_correctR
from get_reaction_agent import get_reaction_withatoms_correctR
import sys
from rxnscribe import RxnScribe
import json
import base64
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
ckpt_path = "./pix2seq_reaction_full.ckpt"
model1 = RxnScribe(ckpt_path, device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
device = torch.device(('cuda' if torch.cuda.is_available() else 'cpu'))
import os
# with open('api_key.txt', 'r') as api_key_file:
# API_KEY = api_key_file.read()
def parse_coref_data_with_fallback(data):
bboxes = data["bboxes"]
corefs = data["corefs"]
paired_indices = set()
# 先处理有 coref 配对的
results = []
for idx1, idx2 in corefs:
smiles_entry = bboxes[idx1] if "smiles" in bboxes[idx1] else bboxes[idx2]
text_entry = bboxes[idx2] if "text" in bboxes[idx2] else bboxes[idx1]
smiles = smiles_entry.get("smiles", "")
texts = text_entry.get("text", [])
results.append({
"smiles": smiles,
"texts": texts
})
# 记录下哪些 SMILES 被配对过了
paired_indices.add(idx1)
paired_indices.add(idx2)
# 处理未配对的 SMILES(补充进来)
for idx, entry in enumerate(bboxes):
if "smiles" in entry and idx not in paired_indices:
results.append({
"smiles": entry["smiles"],
"texts": ["There is no label or failed to detect, please recheck the image again"]
})
return results
def get_multi_molecular_text_to_correct(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
#coref_results = process_reaction_image_with_multiple_products_and_text_correctR(image_path)
coref_results = model.extract_molecule_corefs_from_figures([image])
for item in coref_results:
for bbox in item.get("bboxes", []):
for key in ["category", "bbox", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs',"coords","edges"]: #'atoms'
bbox.pop(key, None) # 安全地移除键
data = coref_results[0]
parsed = parse_coref_data_with_fallback(data)
print(f"coref_results:{json.dumps(parsed)}")
return json.dumps(parsed)
def get_reaction(image_path: str) -> dict:
'''
Returns a structured dictionary of reactions extracted from the image,
including only reactants, conditions, and products with their smiles, bbox, or text.
'''
image_file = image_path
#raw_prediction = model1.predict_image_file(image_file, molscribe=True, ocr=True)
raw_prediction = get_reaction_withatoms_correctR(image_path)
# Ensure raw_prediction is treated as a list directly
structured_output = {}
for section_key in ['reactants', 'conditions', 'products']:
if section_key in raw_prediction[0]:
structured_output[section_key] = []
for item in raw_prediction[0][section_key]:
if section_key in ['reactants', 'products']:
# Extract smiles and bbox for molecules
structured_output[section_key].append({
"smiles": item.get("smiles", ""),
"bbox": item.get("bbox", [])
})
elif section_key == 'conditions':
# Extract text and bbox for conditions
structured_output[section_key].append({
"text": item.get("text", []),
"bbox": item.get("bbox", []),
"smiles": item.get("smiles", []),
})
return structured_output
def process_reaction_image(image_path: str) -> dict:
"""
Args:
image_path (str): 图像文件路径。
Returns:
dict: 整理后的反应数据,包括反应物、产物和反应模板。
"""
# 配置 API Key 和 Azure Endpoint
api_key = os.getenv("CHEMEAGLE_API_KEY")
if not api_key:
raise RuntimeError("Missing CHEMEAGLE_API_KEY environment variable")
azure_endpoint = "https://hkust.azure-api.net" # 替换为实际的 Azure Endpoint
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
client = AzureOpenAI(
api_key=api_key,
api_version='2024-06-01',
azure_endpoint=azure_endpoint
)
# 加载图像并编码为 Base64
def encode_image(image_path: str):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
base64_image = encode_image(image_path)
# GPT 工具调用配置
tools = [
{
'type': 'function',
'function': {
'name': 'get_multi_molecular_text_to_correct',
'description': 'Extracts the SMILES string and text coref from molecular images.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'Path to the reaction image.'
}
},
'required': ['image_path'],
'additionalProperties': False
}
}
},
{
'type': 'function',
'function': {
'name': 'get_reaction',
'description': 'Get a list of reactions from a reaction image. A reaction contains data of the reactants, conditions, and products.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'The path to the reaction image.',
},
},
'required': ['image_path'],
'additionalProperties': False,
},
},
},
]
# 提供给 GPT 的消息内容
with open('./prompt.txt', 'r') as prompt_file:
prompt = prompt_file.read()
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{'type': 'text', 'text': prompt},
{'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
]
}
]
# 调用 GPT 接口
response = client.chat.completions.create(
model = 'gpt-4o',
temperature = 0,
response_format={ 'type': 'json_object' },
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]},
],
tools = tools)
# Step 1: 工具映射表
TOOL_MAP = {
'get_multi_molecular_text_to_correct': get_multi_molecular_text_to_correct,
'get_reaction': get_reaction
}
# Step 2: 处理多个工具调用
tool_calls = response.choices[0].message.tool_calls
results = []
# 遍历每个工具调用
for tool_call in tool_calls:
tool_name = tool_call.function.name
tool_arguments = tool_call.function.arguments
tool_call_id = tool_call.id
tool_args = json.loads(tool_arguments)
if tool_name in TOOL_MAP:
# 调用工具并获取结果
tool_result = TOOL_MAP[tool_name](image_path)
else:
raise ValueError(f"Unknown tool called: {tool_name}")
# 保存每个工具调用结果
results.append({
'role': 'tool',
'content': json.dumps({
'image_path': image_path,
f'{tool_name}':(tool_result),
}),
'tool_call_id': tool_call_id,
})
# Prepare the chat completion payload
completion_payload = {
'model': 'gpt-4o',
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]
},
response.choices[0].message,
*results
],
}
# Generate new response
response = client.chat.completions.create(
model=completion_payload["model"],
messages=completion_payload["messages"],
response_format={ 'type': 'json_object' },
temperature=0
)
# 获取 GPT 生成的结果
gpt_output = json.loads(response.choices[0].message.content)
print(gpt_output)
image = Image.open(image_path).convert('RGB')
image_np = np.array(image)
# reaction_results = model.extract_reactions_from_figures([image_np])
coref_results = model.extract_molecule_corefs_from_figures([image_np])
reaction_results = get_reaction_withatoms_correctR(image_path)[0]
reaction = {
"reactants": reaction_results.get('reactants', []),
"conditions": reaction_results.get('conditions', []),
"products": reaction_results.get('products', [])
}
reaction_results = [{"reactions": [reaction]}]
print(reaction_results)
#coref_results = process_reaction_image_with_multiple_products_and_text_correctR(image_path)
# 定义更新工具输出的函数
def extract_smiles_details(smiles_data, raw_details):
smiles_details = {}
for smiles in smiles_data:
for detail in raw_details:
for bbox in detail.get('bboxes', []):
if bbox.get('smiles') == smiles:
smiles_details[smiles] = {
'category': bbox.get('category'),
'bbox': bbox.get('bbox'),
'category_id': bbox.get('category_id'),
'score': bbox.get('score'),
'molfile': bbox.get('molfile'),
'atoms': bbox.get('atoms'),
'bonds': bbox.get('bonds'),
}
break
return smiles_details
# 获取结果
smiles_details = extract_smiles_details(gpt_output, coref_results)
reactants_array = []
products = []
for reactant in reaction_results[0]['reactions'][0]['reactants']:
if 'smiles' in reactant:
print(f"SMILES:{reactant['smiles']}")
#print(reactant)
reactants_array.append(reactant['smiles'])
for product in reaction_results[0]['reactions'][0]['products']:
#print(product['smiles'])
#print(product)
products.append(product['smiles'])
# 输出结果
#import pprint
#pprint.pprint(smiles_details)
# 整理反应数据
backed_out = utils.backout_without_coref(reaction_results, coref_results, gpt_output, smiles_details, model.molscribe)
backed_out.sort(key=lambda x: x[2])
extracted_rxns = {}
for reactants, products_, label in backed_out:
extracted_rxns[label] = {'reactants': reactants, 'products': products_}
toadd = {
"reaction_template": {
"reactants": reactants_array,
"products": products
},
"reactions": extracted_rxns,
"original_molecule_list": gpt_output
}
# 按标签排序
sorted_keys = sorted(toadd["reactions"].keys())
toadd["reactions"] = {i: toadd["reactions"][i] for i in sorted_keys}
print(toadd)
return toadd
def ChemEagle(image_path: str) -> dict:
"""
输入化学反应图像路径,通过 GPT 模型和 TOOLS 提取反应信息并返回整理后的反应数据。
Args:
image_path (str): 图像文件路径。
Returns:
dict: 整理后的反应数据,包括反应物、产物和反应模板。
"""
# 配置 API Key 和 Azure Endpoint
api_key = os.getenv("CHEMEAGLE_API_KEY")
if not api_key:
raise RuntimeError("Missing CHEMEAGLE_API_KEY environment variable")
azure_endpoint = "https://hkust.azure-api.net" # 替换为实际的 Azure Endpoint
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
client = AzureOpenAI(
api_key=api_key,
api_version='2024-06-01',
azure_endpoint=azure_endpoint
)
# 加载图像并编码为 Base64
def encode_image(image_path: str):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
base64_image = encode_image(image_path)
# GPT 工具调用配置
tools = [
{
'type': 'function',
'function': {
'name': 'process_reaction_image',
'description': 'get the reaction data of the reaction diagram and get SMILES strings of every detailed reaction in reaction diagram and the table, and the original molecular list.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'The path to the reaction image.',
},
},
'required': ['image_path'],
'additionalProperties': False,
},
},
},
]
# 提供给 GPT 的消息内容
with open('./prompt_final_simple_version.txt', 'r') as prompt_file:
prompt = prompt_file.read()
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{'type': 'text', 'text': prompt},
{'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
]
}
]
# 调用 GPT 接口
response = client.chat.completions.create(
model = 'gpt-4o',
temperature = 0,
response_format={ 'type': 'json_object' },
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]},
],
tools = tools)
# Step 1: 工具映射表
TOOL_MAP = {
'process_reaction_image': process_reaction_image
}
# Step 2: 处理多个工具调用
tool_calls = response.choices[0].message.tool_calls
results = []
# 遍历每个工具调用
for tool_call in tool_calls:
tool_name = tool_call.function.name
tool_arguments = tool_call.function.arguments
tool_call_id = tool_call.id
tool_args = json.loads(tool_arguments)
if tool_name in TOOL_MAP:
# 调用工具并获取结果
tool_result = TOOL_MAP[tool_name](image_path)
else:
raise ValueError(f"Unknown tool called: {tool_name}")
# 保存每个工具调用结果
results.append({
'role': 'tool',
'content': json.dumps({
'image_path': image_path,
f'{tool_name}':(tool_result),
}),
'tool_call_id': tool_call_id,
})
# Prepare the chat completion payload
completion_payload = {
'model': 'gpt-4o',
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]
},
response.choices[0].message,
*results
],
}
# Generate new response
response = client.chat.completions.create(
model=completion_payload["model"],
messages=completion_payload["messages"],
response_format={ 'type': 'json_object' },
temperature=0
)
# 获取 GPT 生成的结果
gpt_output = json.loads(response.choices[0].message.content)
print(gpt_output)
return gpt_output