File size: 17,791 Bytes
1f516b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1abb075
 
1f516b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import sys
import torch
import json
from chemietoolkit import ChemIEToolkit,utils
import cv2
from openai import AzureOpenAI
import numpy as np
from PIL import Image
import json
from get_molecular_agent import process_reaction_image_with_multiple_products_and_text_correctR
from get_reaction_agent import get_reaction_withatoms_correctR
import sys
from rxnscribe import RxnScribe
import json
import base64
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')) 
ckpt_path = "./pix2seq_reaction_full.ckpt"
model1 = RxnScribe(ckpt_path, device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
device = torch.device(('cuda' if torch.cuda.is_available() else 'cpu'))
import os

# with open('api_key.txt', 'r') as api_key_file:
#     API_KEY = api_key_file.read()

def parse_coref_data_with_fallback(data):
    bboxes = data["bboxes"]
    corefs = data["corefs"]
    paired_indices = set()

    # 先处理有 coref 配对的
    results = []
    for idx1, idx2 in corefs:
        smiles_entry = bboxes[idx1] if "smiles" in bboxes[idx1] else bboxes[idx2]
        text_entry = bboxes[idx2] if "text" in bboxes[idx2] else bboxes[idx1]

        smiles = smiles_entry.get("smiles", "")
        texts = text_entry.get("text", [])

        results.append({
            "smiles": smiles,
            "texts": texts
        })

        # 记录下哪些 SMILES 被配对过了
        paired_indices.add(idx1)
        paired_indices.add(idx2)

    # 处理未配对的 SMILES(补充进来)
    for idx, entry in enumerate(bboxes):
        if "smiles" in entry and idx not in paired_indices:
            results.append({
                "smiles": entry["smiles"],
                "texts": ["There is no label or failed to detect, please recheck the image again"]
            })

    return results
    

def get_multi_molecular_text_to_correct(image_path: str) -> list:
    '''Returns a list of reactions extracted from the image.'''
    # 打开图像文件
    image = Image.open(image_path).convert('RGB')
    
    # 将图像作为输入传递给模型
    #coref_results = process_reaction_image_with_multiple_products_and_text_correctR(image_path)
    coref_results = model.extract_molecule_corefs_from_figures([image])
    for item in coref_results:
        for bbox in item.get("bboxes", []):
            for key in ["category", "bbox", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs',"coords","edges"]: #'atoms'
                bbox.pop(key, None)  # 安全地移除键

    data = coref_results[0]
    parsed = parse_coref_data_with_fallback(data)

    
    print(f"coref_results:{json.dumps(parsed)}")
    return json.dumps(parsed)








def get_reaction(image_path: str) -> dict:
    '''
    Returns a structured dictionary of reactions extracted from the image, 
    including only reactants, conditions, and products with their smiles, bbox, or text.
    '''
    image_file = image_path
    #raw_prediction = model1.predict_image_file(image_file, molscribe=True, ocr=True)
    raw_prediction = get_reaction_withatoms_correctR(image_path)


    # Ensure raw_prediction is treated as a list directly
    structured_output = {}
    for section_key in ['reactants', 'conditions', 'products']:
        if section_key in raw_prediction[0]:
            structured_output[section_key] = []
            for item in raw_prediction[0][section_key]:
                if section_key in ['reactants', 'products']:
                    # Extract smiles and bbox for molecules
                    structured_output[section_key].append({
                        "smiles": item.get("smiles", ""),
                        "bbox": item.get("bbox", [])
                    })
                elif section_key == 'conditions':
                    # Extract text and bbox for conditions
                    structured_output[section_key].append({
                        "text": item.get("text", []),
                        "bbox": item.get("bbox", []),
                        "smiles": item.get("smiles", []),
                    })
    
    return structured_output



def process_reaction_image(image_path: str) -> dict:
    """

    Args:
        image_path (str): 图像文件路径。

    Returns:
        dict: 整理后的反应数据,包括反应物、产物和反应模板。
    """
    # 配置 API Key 和 Azure Endpoint
    api_key = os.getenv("CHEMEAGLE_API_KEY")
    if not api_key:
        raise RuntimeError("Missing CHEMEAGLE_API_KEY environment variable")

    azure_endpoint = "https://hkust.azure-api.net"  # 替换为实际的 Azure Endpoint

    model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
    client = AzureOpenAI(
        api_key=api_key,
        api_version='2024-06-01',
        azure_endpoint=azure_endpoint
    )

    # 加载图像并编码为 Base64
    def encode_image(image_path: str):
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')

    base64_image = encode_image(image_path)

    # GPT 工具调用配置
    tools = [
        {
            'type': 'function',
            'function': {
                'name': 'get_multi_molecular_text_to_correct',
                'description': 'Extracts the SMILES string and text coref from molecular images.',
                'parameters': {
                    'type': 'object',
                    'properties': {
                        'image_path': {
                            'type': 'string',
                            'description': 'Path to the reaction image.'
                        }
                    },
                    'required': ['image_path'],
                    'additionalProperties': False
                }
            }
        },
        {
        'type': 'function',
        'function': {
            'name': 'get_reaction',
            'description': 'Get a list of reactions from a reaction image. A reaction contains data of the reactants, conditions, and products.',
            'parameters': {
                'type': 'object',
                'properties': {
                    'image_path': {
                        'type': 'string',
                        'description': 'The path to the reaction image.',
                    },
                },
                'required': ['image_path'],
                'additionalProperties': False,
            },
        },
            },
    ]

    # 提供给 GPT 的消息内容
    with open('./prompt.txt', 'r') as prompt_file:
        prompt = prompt_file.read()
    messages = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {
            'role': 'user',
            'content': [
                {'type': 'text', 'text': prompt},
                {'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
            ]
        }
    ]

    # 调用 GPT 接口
    response = client.chat.completions.create(
    model = 'gpt-4o',
    temperature = 0,
    response_format={ 'type': 'json_object' },
    messages = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {
            'role': 'user',
            'content': [
                {
                    'type': 'text',
                    'text': prompt
                },
                {
                    'type': 'image_url',
                    'image_url': {
                        'url': f'data:image/png;base64,{base64_image}'
                    }
                }
            ]},
    ],
    tools = tools)
    
# Step 1: 工具映射表
    TOOL_MAP = {
        'get_multi_molecular_text_to_correct': get_multi_molecular_text_to_correct,
        'get_reaction': get_reaction
    }

    # Step 2: 处理多个工具调用
    tool_calls = response.choices[0].message.tool_calls
    results = []

    # 遍历每个工具调用
    for tool_call in tool_calls:
        tool_name = tool_call.function.name
        tool_arguments = tool_call.function.arguments
        tool_call_id = tool_call.id
        
        tool_args = json.loads(tool_arguments)
        
        if tool_name in TOOL_MAP:
            # 调用工具并获取结果
            tool_result = TOOL_MAP[tool_name](image_path)
        else:
            raise ValueError(f"Unknown tool called: {tool_name}")
        
        # 保存每个工具调用结果
        results.append({
            'role': 'tool',
            'content': json.dumps({
                'image_path': image_path,
                f'{tool_name}':(tool_result),
            }),
            'tool_call_id': tool_call_id,
        })


# Prepare the chat completion payload
    completion_payload = {
        'model': 'gpt-4o',
        'messages': [
            {'role': 'system', 'content': 'You are a helpful assistant.'},
            {
                'role': 'user',
                'content': [
                    {
                        'type': 'text',
                        'text': prompt
                    },
                    {
                        'type': 'image_url',
                        'image_url': {
                            'url': f'data:image/png;base64,{base64_image}'
                        }
                    }
                ]
            },
            response.choices[0].message,
            *results
            ],
    }

# Generate new response
    response = client.chat.completions.create(
        model=completion_payload["model"],
        messages=completion_payload["messages"],
        response_format={ 'type': 'json_object' },
        temperature=0
    )


    
    # 获取 GPT 生成的结果
    gpt_output = json.loads(response.choices[0].message.content)
    print(gpt_output)
    image = Image.open(image_path).convert('RGB')
    image_np = np.array(image)


    # reaction_results = model.extract_reactions_from_figures([image_np])
    coref_results = model.extract_molecule_corefs_from_figures([image_np])

    reaction_results = get_reaction_withatoms_correctR(image_path)[0]
    reaction = {
    "reactants": reaction_results.get('reactants', []),
    "conditions": reaction_results.get('conditions', []),
    "products": reaction_results.get('products', [])
    }
    reaction_results = [{"reactions": [reaction]}]
    print(reaction_results)
    #coref_results = process_reaction_image_with_multiple_products_and_text_correctR(image_path)
    

    # 定义更新工具输出的函数
    def extract_smiles_details(smiles_data, raw_details):
        smiles_details = {}
        for smiles in smiles_data:
            for detail in raw_details:
                for bbox in detail.get('bboxes', []):
                    if bbox.get('smiles') == smiles:
                        smiles_details[smiles] = {
                            'category': bbox.get('category'),
                            'bbox': bbox.get('bbox'),
                            'category_id': bbox.get('category_id'),
                            'score': bbox.get('score'),
                            'molfile': bbox.get('molfile'),
                            'atoms': bbox.get('atoms'),
                            'bonds': bbox.get('bonds'),
                        }
                        break
        return smiles_details

# 获取结果
    smiles_details = extract_smiles_details(gpt_output, coref_results)

    reactants_array = []
    products = []

    for reactant in reaction_results[0]['reactions'][0]['reactants']:
        if 'smiles' in reactant:
            print(f"SMILES:{reactant['smiles']}")
            #print(reactant)
            reactants_array.append(reactant['smiles'])

    for product in reaction_results[0]['reactions'][0]['products']:
        #print(product['smiles'])
        #print(product)
        products.append(product['smiles'])
    # 输出结果
    #import pprint
    #pprint.pprint(smiles_details)

        # 整理反应数据
    backed_out = utils.backout_without_coref(reaction_results, coref_results, gpt_output, smiles_details, model.molscribe)
    backed_out.sort(key=lambda x: x[2])
    extracted_rxns = {}
    for reactants, products_, label in backed_out:
        extracted_rxns[label] = {'reactants': reactants, 'products': products_}

    toadd = {
        "reaction_template": {
            "reactants": reactants_array,
            "products": products
        },
        "reactions": extracted_rxns,
        "original_molecule_list": gpt_output
    }

# 按标签排序
    sorted_keys = sorted(toadd["reactions"].keys())
    toadd["reactions"] = {i: toadd["reactions"][i] for i in sorted_keys}
    print(toadd)
    return toadd




def ChemEagle(image_path: str) -> dict:
    """
    输入化学反应图像路径,通过 GPT 模型和 TOOLS 提取反应信息并返回整理后的反应数据。

    Args:
        image_path (str): 图像文件路径。

    Returns:
        dict: 整理后的反应数据,包括反应物、产物和反应模板。
    """
    # 配置 API Key 和 Azure Endpoint
    api_key = os.getenv("CHEMEAGLE_API_KEY")
    if not api_key:
        raise RuntimeError("Missing CHEMEAGLE_API_KEY environment variable")

    azure_endpoint = "https://hkust.azure-api.net"  # 替换为实际的 Azure Endpoint
    
    model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
    client = AzureOpenAI(
        api_key=api_key,
        api_version='2024-06-01',
        azure_endpoint=azure_endpoint
    )

    # 加载图像并编码为 Base64
    def encode_image(image_path: str):
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')

    base64_image = encode_image(image_path)

    # GPT 工具调用配置
    tools = [
        {
        'type': 'function',
        'function': {
            'name': 'process_reaction_image',
            'description': 'get the reaction data of the reaction diagram and get SMILES strings of every detailed reaction in reaction diagram and the table, and the original molecular list.',
            'parameters': {
                'type': 'object',
                'properties': {
                    'image_path': {
                        'type': 'string',
                        'description': 'The path to the reaction image.',
                    },
                },
                'required': ['image_path'],
                'additionalProperties': False,
            },
        },
            },
    ]

    # 提供给 GPT 的消息内容
    with open('./prompt_final_simple_version.txt', 'r') as prompt_file:
        prompt = prompt_file.read()
    messages = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {
            'role': 'user',
            'content': [
                {'type': 'text', 'text': prompt},
                {'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
            ]
        }
    ]

    # 调用 GPT 接口
    response = client.chat.completions.create(
    model = 'gpt-4o',
    temperature = 0,
    response_format={ 'type': 'json_object' },
    messages = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {
            'role': 'user',
            'content': [
                {
                    'type': 'text',
                    'text': prompt
                },
                {
                    'type': 'image_url',
                    'image_url': {
                        'url': f'data:image/png;base64,{base64_image}'
                    }
                }
            ]},
    ],
    tools = tools)
    
# Step 1: 工具映射表
    TOOL_MAP = {
        'process_reaction_image': process_reaction_image
    }

    # Step 2: 处理多个工具调用
    tool_calls = response.choices[0].message.tool_calls
    results = []

    # 遍历每个工具调用
    for tool_call in tool_calls:
        tool_name = tool_call.function.name
        tool_arguments = tool_call.function.arguments
        tool_call_id = tool_call.id
        
        tool_args = json.loads(tool_arguments)
        
        if tool_name in TOOL_MAP:
            # 调用工具并获取结果
            tool_result = TOOL_MAP[tool_name](image_path)
        else:
            raise ValueError(f"Unknown tool called: {tool_name}")
        
        # 保存每个工具调用结果
        results.append({
            'role': 'tool',
            'content': json.dumps({
                'image_path': image_path,
                f'{tool_name}':(tool_result),
            }),
            'tool_call_id': tool_call_id,
        })


# Prepare the chat completion payload
    completion_payload = {
        'model': 'gpt-4o',
        'messages': [
            {'role': 'system', 'content': 'You are a helpful assistant.'},
            {
                'role': 'user',
                'content': [
                    {
                        'type': 'text',
                        'text': prompt
                    },
                    {
                        'type': 'image_url',
                        'image_url': {
                            'url': f'data:image/png;base64,{base64_image}'
                        }
                    }
                ]
            },
            response.choices[0].message,
            *results
            ],
    }

# Generate new response
    response = client.chat.completions.create(
        model=completion_payload["model"],
        messages=completion_payload["messages"],
        response_format={ 'type': 'json_object' },
        temperature=0
    )


    
    # 获取 GPT 生成的结果
    gpt_output = json.loads(response.choices[0].message.content)
    print(gpt_output)
    return gpt_output