File size: 14,730 Bytes
d2902aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import yaml
import numpy as np
import copy
import torch
from torch import nn
import torch.nn.functional as F
from src.lm import RNNLM
LOG_ZERO = -10000000.0 # Log-zero for CTC
class CTCPrefixScore():
'''
CTC Prefix score calculator
An implementation of Algo. 2 in https://www.merl.com/publications/docs/TR2017-190.pdf (Watanabe et. al.)
Reference (official implementation): https://github.com/espnet/espnet/tree/master/espnet/nets
'''
def __init__(self, x):
self.logzero = -100000000.0
self.blank = 0
self.eos = 1
self.x = x.cpu().numpy()[0]
self.odim = x.shape[-1]
self.input_length = len(self.x)
def init_state(self):
# 0 = non-blank, 1 = blank
r = np.full((self.input_length, 2), self.logzero, dtype=np.float32)
# Accumalate blank at each step
r[0, 1] = self.x[0, self.blank]
for i in range(1, self.input_length):
r[i, 1] = r[i-1, 1] + self.x[i, self.blank]
return r
def full_compute(self, g, r_prev):
'''Given prefix g, return the probability of all possible sequence y (where y = concat(g,c))
This function computes all possible tokens for c (memory inefficient)'''
prefix_length = len(g)
last_char = g[-1] if prefix_length > 0 else 0
# init. r
r = np.full((self.input_length, 2, self.odim),
self.logzero, dtype=np.float32)
# start from len(g) because is impossible for CTC to generate |y|>|X|
start = max(1, prefix_length)
if prefix_length == 0:
r[0, 0, :] = self.x[0, :] # if g = <sos>
psi = r[start-1, 0, :]
phi = np.logaddexp(r_prev[:, 0], r_prev[:, 1])
for t in range(start, self.input_length):
# prev_blank
prev_blank = np.full((self.odim), r_prev[t-1, 1], dtype=np.float32)
# prev_nonblank
prev_nonblank = np.full(
(self.odim), r_prev[t-1, 0], dtype=np.float32)
prev_nonblank[last_char] = self.logzero
phi = np.logaddexp(prev_nonblank, prev_blank)
# P(h|current step is non-blank) = [ P(prev. step = y) + P()]*P(c)
r[t, 0, :] = np.logaddexp(r[t-1, 0, :], phi) + self.x[t, :]
# P(h|current step is blank) = [P(prev. step is blank) + P(prev. step is non-blank)]*P(now=blank)
r[t, 1, :] = np.logaddexp(
r[t-1, 1, :], r[t-1, 0, :]) + self.x[t, self.blank]
psi = np.logaddexp(psi, phi+self.x[t, :])
#psi[self.eos] = np.logaddexp(r_prev[-1,0], r_prev[-1,1])
return psi, np.rollaxis(r, 2)
def cheap_compute(self, g, r_prev, candidates):
'''Given prefix g, return the probability of all possible sequence y (where y = concat(g,c))
This function considers only those tokens in candidates for c (memory efficient)'''
prefix_length = len(g)
odim = len(candidates)
last_char = g[-1] if prefix_length > 0 else 0
# init. r
r = np.full((self.input_length, 2, len(candidates)),
self.logzero, dtype=np.float32)
# start from len(g) because is impossible for CTC to generate |y|>|X|
start = max(1, prefix_length)
if prefix_length == 0:
r[0, 0, :] = self.x[0, candidates] # if g = <sos>
psi = r[start-1, 0, :]
# Phi = (prev_nonblank,prev_blank)
sum_prev = np.logaddexp(r_prev[:, 0], r_prev[:, 1])
phi = np.repeat(sum_prev[..., None],odim,axis=-1)
# Handle edge case : last tok of prefix in candidates
if prefix_length>0 and last_char in candidates:
phi[:,candidates.index(last_char)] = r_prev[:,1]
for t in range(start, self.input_length):
# prev_blank
# prev_blank = np.full((odim), r_prev[t-1, 1], dtype=np.float32)
# prev_nonblank
# prev_nonblank = np.full((odim), r_prev[t-1, 0], dtype=np.float32)
# phi = np.logaddexp(prev_nonblank, prev_blank)
# P(h|current step is non-blank) = P(prev. step = y)*P(c)
r[t, 0, :] = np.logaddexp( r[t-1, 0, :], phi[t-1]) + self.x[t, candidates]
# P(h|current step is blank) = [P(prev. step is blank) + P(prev. step is non-blank)]*P(now=blank)
r[t, 1, :] = np.logaddexp( r[t-1, 1, :], r[t-1, 0, :]) + self.x[t, self.blank]
psi = np.logaddexp(psi, phi[t-1,]+self.x[t, candidates])
# P(end of sentence) = P(g)
if self.eos in candidates:
psi[candidates.index(self.eos)] = sum_prev[-1]
return psi, np.rollaxis(r, 2)
class CTCHypothesis():
'''
Hypothesis for pure CTC beam search decoding.
An implementation of Algo. 1 in http://proceedings.mlr.press/v32/graves14.pdf
'''
def __init__(self):
self.y = []
# All probabilities are computed in log scale
self.Pr_y_t_blank = 0.0 # Pr-(y,t-1) -> Pr-(y,t)
self.Pr_y_t_nblank = LOG_ZERO # Pr+(y,t-1) -> Pr+(y,t)
self.Pr_y_t_blank_bkup = 0.0 # Pr-(y,t-1) -> Pr-(y,t)
self.Pr_y_t_nblank_bkup = LOG_ZERO # Pr+(y,t-1) -> Pr+(y,t)
self.lm_output = None
self.lm_hidden = None
self.updated_lm = False
def update_lm(self, output, hidden):
self.lm_output = output
self.lm_hidden = hidden
self.updated_lm = True
def get_len(self):
return len(self.y)
def get_string(self):
# Convert the output sequence from list to string
return ''.join([str(s) for s in self.y])
def get_score(self):
return np.logaddexp(self.Pr_y_t_blank, self.Pr_y_t_nblank)
def get_final_score(self):
if len(self.y) > 0:
return np.logaddexp(self.Pr_y_t_blank, self.Pr_y_t_nblank) / len(self.y)
else:
return np.logaddexp(self.Pr_y_t_blank, self.Pr_y_t_nblank)
def check_same(self, y_2):
if len(self.y) != len(y_2):
return False
for i in range(len(self.y)):
if self.y[i] != y_2[i]:
return False
return True
def update_Pr_nblank(self, ctc_y_t):
# ctc_y_t : Pr(ye,t|x)
# Pr+(y,t) = Pr+(y,t-1) * Pr(ye,t|x)
self.Pr_y_t_nblank += ctc_y_t
def update_Pr_nblank_prefix(self, ctc_y_t, Pr_y_t_blank_prefix, Pr_y_t_nblank_prefix, Pr_ye_y=None):
# ctc_y_t : Pr(ye,t|x)
lm_prob = Pr_ye_y if Pr_ye_y is not None else 0.0
if len(self.y) == 0: return
if len(self.y) == 1:
Pr_ye_y_prefix = ctc_y_t + lm_prob + np.logaddexp(Pr_y_t_blank_prefix, Pr_y_t_nblank_prefix)
else:
# Pr_ye_y : LM Pr(ye|y)
Pr_ye_y_prefix = ctc_y_t + lm_prob + (Pr_y_t_blank_prefix if self.y[-1] == self.y[-2] \
else np.logaddexp(Pr_y_t_blank_prefix, Pr_y_t_nblank_prefix))
# Pr+(y,t) = Pr+(y,t) + Pr(ye,y^,t)
self.Pr_y_t_nblank = np.logaddexp(self.Pr_y_t_nblank, Pr_ye_y_prefix)
def update_Pr_blank(self, ctc_blank_t):
# Pr-(y,t) = Pr(y,t-1) * Pr(-,t|x)
self.Pr_y_t_blank = np.logaddexp(self.Pr_y_t_nblank_bkup, self.Pr_y_t_blank_bkup) + ctc_blank_t
def add_token(self, token, ctc_token_t, Pr_k_y=None):
# Add token to the end of the sequence
# Update current sequence probability
lm_prob = Pr_k_y if Pr_k_y is not None else 0.0
if len(self.y) == 0:
Pr_y_t_nblank_new = ctc_token_t + lm_prob + np.logaddexp(self.Pr_y_t_blank_bkup, self.Pr_y_t_nblank_bkup)
else:
# Pr_k_y : LM Pr(k|y)
Pr_y_t_nblank_new = ctc_token_t + lm_prob + (self.Pr_y_t_blank_bkup if self.y[-1] == token else \
np.logaddexp(self.Pr_y_t_blank_bkup, self.Pr_y_t_nblank_bkup))
self.Pr_y_t_blank = LOG_ZERO
self.Pr_y_t_nblank = Pr_y_t_nblank_new
self.Pr_y_t_blank_bkup = self.Pr_y_t_blank
self.Pr_y_t_nblank_bkup = self.Pr_y_t_nblank
self.y.append(token)
def orig_backup(self):
self.Pr_y_t_blank_bkup = self.Pr_y_t_blank
self.Pr_y_t_nblank_bkup = self.Pr_y_t_nblank
class CTCBeamDecoder(nn.Module):
''' Beam decoder for ASR (CTC only) '''
def __init__(self, asr, vocab_range, beam_size, vocab_candidate,
lm_path='', lm_config='', lm_weight=0.0, device=None):
super().__init__()
# Setup
self.asr = asr
self.vocab_range = vocab_range
self.beam_size = beam_size
self.vocab_cand = vocab_candidate
assert self.vocab_cand <= len(self.vocab_range)
assert self.asr.enable_ctc
# Setup RNNLM
self.apply_lm = lm_weight > 0
self.lm_w = 0
if self.apply_lm:
self.device = device
self.lm_w = lm_weight
self.lm_path = lm_path
lm_config = yaml.load(open(lm_config, 'r'), Loader=yaml.FullLoader)
self.lm = RNNLM(self.asr.vocab_size, **lm_config['model']).to(self.device)
self.lm.load_state_dict(torch.load(
self.lm_path, map_location='cpu')['model'])
self.lm.eval()
def create_msg(self):
msg = ['Decode spec| CTC decoding \t| Beam size = {} \t| LM weight = {}'.format(self.beam_size, self.lm_w)]
return msg
def forward(self, feat, feat_len):
# Init.
assert feat.shape[0] == 1, "Batchsize == 1 is required for beam search"
# Calculate CTC output probability
ctc_output, encode_len, att_output, att_align, dec_state = \
self.asr(feat, feat_len, 10)
del encode_len, att_output, att_align, dec_state, feat_len
ctc_output = F.log_softmax(ctc_output[0], dim=-1).cpu().detach().numpy()
T = len(ctc_output) # ctc_output = Pr(k,t|x) / dim: T x Vocab
# Best W probable sequences
B = [CTCHypothesis()]
if self.apply_lm:
# 0 == <sos> for RNNLM
output, hidden = \
self.lm(torch.zeros((1,1),dtype=torch.long).to(self.device), torch.ones(1,dtype=torch.long).to(self.device), None)
B[0].update_lm(
(output).log_softmax(dim=-1).squeeze().cpu().numpy(),
hidden
)
start = True
for t in range(T):
# greedily ignoring pads at the beginning of the sequence
if np.argmax(ctc_output[t]) == 0 and start:
continue
else:
start = False
B_new = []
for i in range(len(B)): # For y in B
B_i_new = copy.deepcopy(B[i])
if B_i_new.get_len() > 0: # If y is not empty
if B_i_new.y[-1] == 1:
# <eos> = 1 (reached the end)
B_new.append(B_i_new)
continue
B_i_new.update_Pr_nblank(ctc_output[t, B_i_new.y[-1]])
# Find the same prefix
for j in range(len(B)):
if i != j and B[j].check_same(B_i_new.y[:-1]):
lm_prob = 0.0
if self.apply_lm:
lm_prob = self.lm_w * B[j].lm_output[B_i_new.y[-1]]
B_i_new.update_Pr_nblank_prefix(ctc_output[t, B_i_new.y[-1]],
B[j].Pr_y_t_blank, B[j].Pr_y_t_nblank, lm_prob)
break
B_i_new.update_Pr_blank(ctc_output[t, 0]) # 0 == <pad>
if self.apply_lm:
lm_hidden = B_i_new.lm_hidden
lm_probs = B_i_new.lm_output
else:
lm_hidden = None
lm_probs = None
# Sort the next possible output symbol by CTC (and LM) score
if self.apply_lm:
ctc_vocab_cand = sorted(zip(
self.vocab_range, ctc_output[t, self.vocab_range] + self.lm_w * lm_probs[self.vocab_range]),
reverse=True, key=lambda x: x[1])
else:
ctc_vocab_cand = sorted(zip(self.vocab_range, ctc_output[t, self.vocab_range]), reverse=True, key=lambda x: x[1])
# Select top K possible symbols to calculate the probabilities
for j in range(self.vocab_cand):
# <pad>=0, <eos>=1, <unk>=2
k = ctc_vocab_cand[j][0]
# Pr(k,t|x)
hyp_yk = copy.deepcopy(B_i_new)
lm_prob = 0.0 if not self.apply_lm else self.lm_w * lm_probs[k]
hyp_yk.add_token(k, ctc_output[t, k], lm_prob)
hyp_yk.updated_lm = False
B_new.append(hyp_yk)
B_i_new.orig_backup() # Retrieve origin prob. before add_token()
B_new.append(B_i_new)
del B
B = []
# Remove duplicated sequences by sorting first (O(NlogN))
B_new = sorted(B_new, key=lambda x: x.get_string())
B.append(B_new[0]) # First Hyp always unique
for i in range(1,len(B_new)):
if B_new[i].check_same(B[-1].y):
# Next Hyp is duplicated, pick the higher one
if B_new[i].get_score() > B[-1].get_score():
B[-1] = B_new[i]
continue
else:
# Next Hyp is different, hence valid
B.append(B_new[i])
del B_new
# Find top W possible sequences
if t == T - 1:
B = sorted(B, reverse=True, key=lambda x: x.get_final_score())
else:
B = sorted(B, reverse=True, key=lambda x: x.get_score())
if len(B) > self.beam_size:
B = B[:self.beam_size]
# Update LM states
if self.apply_lm and t < T - 1:
for i in range(len(B)):
if B[i].get_len() > 0 and not B[i].updated_lm:
output, hidden = \
self.lm(B[i].y[-1] * torch.ones((1,1), dtype=torch.long).to(self.device),
torch.ones(1,dtype=torch.long).to(self.device), B[i].lm_hidden)
B[i].update_lm(
(output).log_softmax(dim=-1).squeeze().cpu().numpy(),
hidden
)
return [b.y for b in B]
|