Upload 2 files
Browse files
ctc.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import numpy as np
|
3 |
+
import copy
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from src.lm import RNNLM
|
9 |
+
|
10 |
+
LOG_ZERO = -10000000.0 # Log-zero for CTC
|
11 |
+
|
12 |
+
class CTCPrefixScore():
|
13 |
+
'''
|
14 |
+
CTC Prefix score calculator
|
15 |
+
An implementation of Algo. 2 in https://www.merl.com/publications/docs/TR2017-190.pdf (Watanabe et. al.)
|
16 |
+
Reference (official implementation): https://github.com/espnet/espnet/tree/master/espnet/nets
|
17 |
+
'''
|
18 |
+
|
19 |
+
def __init__(self, x):
|
20 |
+
self.logzero = -100000000.0
|
21 |
+
self.blank = 0
|
22 |
+
self.eos = 1
|
23 |
+
self.x = x.cpu().numpy()[0]
|
24 |
+
self.odim = x.shape[-1]
|
25 |
+
self.input_length = len(self.x)
|
26 |
+
|
27 |
+
def init_state(self):
|
28 |
+
# 0 = non-blank, 1 = blank
|
29 |
+
r = np.full((self.input_length, 2), self.logzero, dtype=np.float32)
|
30 |
+
|
31 |
+
# Accumalate blank at each step
|
32 |
+
r[0, 1] = self.x[0, self.blank]
|
33 |
+
for i in range(1, self.input_length):
|
34 |
+
r[i, 1] = r[i-1, 1] + self.x[i, self.blank]
|
35 |
+
return r
|
36 |
+
|
37 |
+
def full_compute(self, g, r_prev):
|
38 |
+
'''Given prefix g, return the probability of all possible sequence y (where y = concat(g,c))
|
39 |
+
This function computes all possible tokens for c (memory inefficient)'''
|
40 |
+
prefix_length = len(g)
|
41 |
+
last_char = g[-1] if prefix_length > 0 else 0
|
42 |
+
|
43 |
+
# init. r
|
44 |
+
r = np.full((self.input_length, 2, self.odim),
|
45 |
+
self.logzero, dtype=np.float32)
|
46 |
+
|
47 |
+
# start from len(g) because is impossible for CTC to generate |y|>|X|
|
48 |
+
start = max(1, prefix_length)
|
49 |
+
|
50 |
+
if prefix_length == 0:
|
51 |
+
r[0, 0, :] = self.x[0, :] # if g = <sos>
|
52 |
+
|
53 |
+
psi = r[start-1, 0, :]
|
54 |
+
|
55 |
+
phi = np.logaddexp(r_prev[:, 0], r_prev[:, 1])
|
56 |
+
|
57 |
+
for t in range(start, self.input_length):
|
58 |
+
# prev_blank
|
59 |
+
prev_blank = np.full((self.odim), r_prev[t-1, 1], dtype=np.float32)
|
60 |
+
# prev_nonblank
|
61 |
+
prev_nonblank = np.full(
|
62 |
+
(self.odim), r_prev[t-1, 0], dtype=np.float32)
|
63 |
+
prev_nonblank[last_char] = self.logzero
|
64 |
+
|
65 |
+
phi = np.logaddexp(prev_nonblank, prev_blank)
|
66 |
+
# P(h|current step is non-blank) = [ P(prev. step = y) + P()]*P(c)
|
67 |
+
r[t, 0, :] = np.logaddexp(r[t-1, 0, :], phi) + self.x[t, :]
|
68 |
+
# P(h|current step is blank) = [P(prev. step is blank) + P(prev. step is non-blank)]*P(now=blank)
|
69 |
+
r[t, 1, :] = np.logaddexp(
|
70 |
+
r[t-1, 1, :], r[t-1, 0, :]) + self.x[t, self.blank]
|
71 |
+
psi = np.logaddexp(psi, phi+self.x[t, :])
|
72 |
+
|
73 |
+
#psi[self.eos] = np.logaddexp(r_prev[-1,0], r_prev[-1,1])
|
74 |
+
return psi, np.rollaxis(r, 2)
|
75 |
+
|
76 |
+
def cheap_compute(self, g, r_prev, candidates):
|
77 |
+
'''Given prefix g, return the probability of all possible sequence y (where y = concat(g,c))
|
78 |
+
This function considers only those tokens in candidates for c (memory efficient)'''
|
79 |
+
prefix_length = len(g)
|
80 |
+
odim = len(candidates)
|
81 |
+
last_char = g[-1] if prefix_length > 0 else 0
|
82 |
+
|
83 |
+
# init. r
|
84 |
+
r = np.full((self.input_length, 2, len(candidates)),
|
85 |
+
self.logzero, dtype=np.float32)
|
86 |
+
|
87 |
+
# start from len(g) because is impossible for CTC to generate |y|>|X|
|
88 |
+
start = max(1, prefix_length)
|
89 |
+
|
90 |
+
if prefix_length == 0:
|
91 |
+
r[0, 0, :] = self.x[0, candidates] # if g = <sos>
|
92 |
+
|
93 |
+
psi = r[start-1, 0, :]
|
94 |
+
# Phi = (prev_nonblank,prev_blank)
|
95 |
+
sum_prev = np.logaddexp(r_prev[:, 0], r_prev[:, 1])
|
96 |
+
phi = np.repeat(sum_prev[..., None],odim,axis=-1)
|
97 |
+
# Handle edge case : last tok of prefix in candidates
|
98 |
+
if prefix_length>0 and last_char in candidates:
|
99 |
+
phi[:,candidates.index(last_char)] = r_prev[:,1]
|
100 |
+
|
101 |
+
for t in range(start, self.input_length):
|
102 |
+
# prev_blank
|
103 |
+
# prev_blank = np.full((odim), r_prev[t-1, 1], dtype=np.float32)
|
104 |
+
# prev_nonblank
|
105 |
+
# prev_nonblank = np.full((odim), r_prev[t-1, 0], dtype=np.float32)
|
106 |
+
# phi = np.logaddexp(prev_nonblank, prev_blank)
|
107 |
+
# P(h|current step is non-blank) = P(prev. step = y)*P(c)
|
108 |
+
r[t, 0, :] = np.logaddexp( r[t-1, 0, :], phi[t-1]) + self.x[t, candidates]
|
109 |
+
# P(h|current step is blank) = [P(prev. step is blank) + P(prev. step is non-blank)]*P(now=blank)
|
110 |
+
r[t, 1, :] = np.logaddexp( r[t-1, 1, :], r[t-1, 0, :]) + self.x[t, self.blank]
|
111 |
+
psi = np.logaddexp(psi, phi[t-1,]+self.x[t, candidates])
|
112 |
+
|
113 |
+
# P(end of sentence) = P(g)
|
114 |
+
if self.eos in candidates:
|
115 |
+
psi[candidates.index(self.eos)] = sum_prev[-1]
|
116 |
+
return psi, np.rollaxis(r, 2)
|
117 |
+
|
118 |
+
class CTCHypothesis():
|
119 |
+
'''
|
120 |
+
Hypothesis for pure CTC beam search decoding.
|
121 |
+
An implementation of Algo. 1 in http://proceedings.mlr.press/v32/graves14.pdf
|
122 |
+
'''
|
123 |
+
def __init__(self):
|
124 |
+
self.y = []
|
125 |
+
# All probabilities are computed in log scale
|
126 |
+
self.Pr_y_t_blank = 0.0 # Pr-(y,t-1) -> Pr-(y,t)
|
127 |
+
self.Pr_y_t_nblank = LOG_ZERO # Pr+(y,t-1) -> Pr+(y,t)
|
128 |
+
|
129 |
+
self.Pr_y_t_blank_bkup = 0.0 # Pr-(y,t-1) -> Pr-(y,t)
|
130 |
+
self.Pr_y_t_nblank_bkup = LOG_ZERO # Pr+(y,t-1) -> Pr+(y,t)
|
131 |
+
|
132 |
+
self.lm_output = None
|
133 |
+
self.lm_hidden = None
|
134 |
+
self.updated_lm = False
|
135 |
+
|
136 |
+
def update_lm(self, output, hidden):
|
137 |
+
self.lm_output = output
|
138 |
+
self.lm_hidden = hidden
|
139 |
+
self.updated_lm = True
|
140 |
+
|
141 |
+
def get_len(self):
|
142 |
+
return len(self.y)
|
143 |
+
|
144 |
+
def get_string(self):
|
145 |
+
# Convert the output sequence from list to string
|
146 |
+
return ''.join([str(s) for s in self.y])
|
147 |
+
|
148 |
+
def get_score(self):
|
149 |
+
return np.logaddexp(self.Pr_y_t_blank, self.Pr_y_t_nblank)
|
150 |
+
|
151 |
+
def get_final_score(self):
|
152 |
+
if len(self.y) > 0:
|
153 |
+
return np.logaddexp(self.Pr_y_t_blank, self.Pr_y_t_nblank) / len(self.y)
|
154 |
+
else:
|
155 |
+
return np.logaddexp(self.Pr_y_t_blank, self.Pr_y_t_nblank)
|
156 |
+
|
157 |
+
def check_same(self, y_2):
|
158 |
+
if len(self.y) != len(y_2):
|
159 |
+
return False
|
160 |
+
for i in range(len(self.y)):
|
161 |
+
if self.y[i] != y_2[i]:
|
162 |
+
return False
|
163 |
+
return True
|
164 |
+
|
165 |
+
def update_Pr_nblank(self, ctc_y_t):
|
166 |
+
# ctc_y_t : Pr(ye,t|x)
|
167 |
+
# Pr+(y,t) = Pr+(y,t-1) * Pr(ye,t|x)
|
168 |
+
self.Pr_y_t_nblank += ctc_y_t
|
169 |
+
|
170 |
+
def update_Pr_nblank_prefix(self, ctc_y_t, Pr_y_t_blank_prefix, Pr_y_t_nblank_prefix, Pr_ye_y=None):
|
171 |
+
# ctc_y_t : Pr(ye,t|x)
|
172 |
+
lm_prob = Pr_ye_y if Pr_ye_y is not None else 0.0
|
173 |
+
if len(self.y) == 0: return
|
174 |
+
if len(self.y) == 1:
|
175 |
+
Pr_ye_y_prefix = ctc_y_t + lm_prob + np.logaddexp(Pr_y_t_blank_prefix, Pr_y_t_nblank_prefix)
|
176 |
+
else:
|
177 |
+
# Pr_ye_y : LM Pr(ye|y)
|
178 |
+
Pr_ye_y_prefix = ctc_y_t + lm_prob + (Pr_y_t_blank_prefix if self.y[-1] == self.y[-2] \
|
179 |
+
else np.logaddexp(Pr_y_t_blank_prefix, Pr_y_t_nblank_prefix))
|
180 |
+
# Pr+(y,t) = Pr+(y,t) + Pr(ye,y^,t)
|
181 |
+
self.Pr_y_t_nblank = np.logaddexp(self.Pr_y_t_nblank, Pr_ye_y_prefix)
|
182 |
+
|
183 |
+
def update_Pr_blank(self, ctc_blank_t):
|
184 |
+
# Pr-(y,t) = Pr(y,t-1) * Pr(-,t|x)
|
185 |
+
self.Pr_y_t_blank = np.logaddexp(self.Pr_y_t_nblank_bkup, self.Pr_y_t_blank_bkup) + ctc_blank_t
|
186 |
+
|
187 |
+
def add_token(self, token, ctc_token_t, Pr_k_y=None):
|
188 |
+
# Add token to the end of the sequence
|
189 |
+
# Update current sequence probability
|
190 |
+
lm_prob = Pr_k_y if Pr_k_y is not None else 0.0
|
191 |
+
if len(self.y) == 0:
|
192 |
+
Pr_y_t_nblank_new = ctc_token_t + lm_prob + np.logaddexp(self.Pr_y_t_blank_bkup, self.Pr_y_t_nblank_bkup)
|
193 |
+
else:
|
194 |
+
# Pr_k_y : LM Pr(k|y)
|
195 |
+
Pr_y_t_nblank_new = ctc_token_t + lm_prob + (self.Pr_y_t_blank_bkup if self.y[-1] == token else \
|
196 |
+
np.logaddexp(self.Pr_y_t_blank_bkup, self.Pr_y_t_nblank_bkup))
|
197 |
+
|
198 |
+
self.Pr_y_t_blank = LOG_ZERO
|
199 |
+
self.Pr_y_t_nblank = Pr_y_t_nblank_new
|
200 |
+
|
201 |
+
self.Pr_y_t_blank_bkup = self.Pr_y_t_blank
|
202 |
+
self.Pr_y_t_nblank_bkup = self.Pr_y_t_nblank
|
203 |
+
|
204 |
+
self.y.append(token)
|
205 |
+
|
206 |
+
def orig_backup(self):
|
207 |
+
self.Pr_y_t_blank_bkup = self.Pr_y_t_blank
|
208 |
+
self.Pr_y_t_nblank_bkup = self.Pr_y_t_nblank
|
209 |
+
|
210 |
+
class CTCBeamDecoder(nn.Module):
|
211 |
+
''' Beam decoder for ASR (CTC only) '''
|
212 |
+
def __init__(self, asr, vocab_range, beam_size, vocab_candidate,
|
213 |
+
lm_path='', lm_config='', lm_weight=0.0, device=None):
|
214 |
+
super().__init__()
|
215 |
+
# Setup
|
216 |
+
self.asr = asr
|
217 |
+
self.vocab_range = vocab_range
|
218 |
+
self.beam_size = beam_size
|
219 |
+
self.vocab_cand = vocab_candidate
|
220 |
+
assert self.vocab_cand <= len(self.vocab_range)
|
221 |
+
|
222 |
+
assert self.asr.enable_ctc
|
223 |
+
|
224 |
+
# Setup RNNLM
|
225 |
+
self.apply_lm = lm_weight > 0
|
226 |
+
self.lm_w = 0
|
227 |
+
if self.apply_lm:
|
228 |
+
self.device = device
|
229 |
+
self.lm_w = lm_weight
|
230 |
+
self.lm_path = lm_path
|
231 |
+
lm_config = yaml.load(open(lm_config, 'r'), Loader=yaml.FullLoader)
|
232 |
+
self.lm = RNNLM(self.asr.vocab_size, **lm_config['model']).to(self.device)
|
233 |
+
self.lm.load_state_dict(torch.load(
|
234 |
+
self.lm_path, map_location='cpu')['model'])
|
235 |
+
self.lm.eval()
|
236 |
+
|
237 |
+
def create_msg(self):
|
238 |
+
msg = ['Decode spec| CTC decoding \t| Beam size = {} \t| LM weight = {}'.format(self.beam_size, self.lm_w)]
|
239 |
+
return msg
|
240 |
+
|
241 |
+
def forward(self, feat, feat_len):
|
242 |
+
# Init.
|
243 |
+
assert feat.shape[0] == 1, "Batchsize == 1 is required for beam search"
|
244 |
+
|
245 |
+
# Calculate CTC output probability
|
246 |
+
ctc_output, encode_len, att_output, att_align, dec_state = \
|
247 |
+
self.asr(feat, feat_len, 10)
|
248 |
+
del encode_len, att_output, att_align, dec_state, feat_len
|
249 |
+
ctc_output = F.log_softmax(ctc_output[0], dim=-1).cpu().detach().numpy()
|
250 |
+
T = len(ctc_output) # ctc_output = Pr(k,t|x) / dim: T x Vocab
|
251 |
+
|
252 |
+
# Best W probable sequences
|
253 |
+
B = [CTCHypothesis()]
|
254 |
+
if self.apply_lm:
|
255 |
+
# 0 == <sos> for RNNLM
|
256 |
+
output, hidden = \
|
257 |
+
self.lm(torch.zeros((1,1),dtype=torch.long).to(self.device), torch.ones(1,dtype=torch.long).to(self.device), None)
|
258 |
+
B[0].update_lm(
|
259 |
+
(output).log_softmax(dim=-1).squeeze().cpu().numpy(),
|
260 |
+
hidden
|
261 |
+
)
|
262 |
+
|
263 |
+
start = True
|
264 |
+
for t in range(T):
|
265 |
+
# greedily ignoring pads at the beginning of the sequence
|
266 |
+
if np.argmax(ctc_output[t]) == 0 and start:
|
267 |
+
continue
|
268 |
+
else:
|
269 |
+
start = False
|
270 |
+
B_new = []
|
271 |
+
for i in range(len(B)): # For y in B
|
272 |
+
B_i_new = copy.deepcopy(B[i])
|
273 |
+
if B_i_new.get_len() > 0: # If y is not empty
|
274 |
+
if B_i_new.y[-1] == 1:
|
275 |
+
# <eos> = 1 (reached the end)
|
276 |
+
B_new.append(B_i_new)
|
277 |
+
continue
|
278 |
+
B_i_new.update_Pr_nblank(ctc_output[t, B_i_new.y[-1]])
|
279 |
+
# Find the same prefix
|
280 |
+
for j in range(len(B)):
|
281 |
+
if i != j and B[j].check_same(B_i_new.y[:-1]):
|
282 |
+
lm_prob = 0.0
|
283 |
+
if self.apply_lm:
|
284 |
+
lm_prob = self.lm_w * B[j].lm_output[B_i_new.y[-1]]
|
285 |
+
B_i_new.update_Pr_nblank_prefix(ctc_output[t, B_i_new.y[-1]],
|
286 |
+
B[j].Pr_y_t_blank, B[j].Pr_y_t_nblank, lm_prob)
|
287 |
+
break
|
288 |
+
B_i_new.update_Pr_blank(ctc_output[t, 0]) # 0 == <pad>
|
289 |
+
if self.apply_lm:
|
290 |
+
lm_hidden = B_i_new.lm_hidden
|
291 |
+
lm_probs = B_i_new.lm_output
|
292 |
+
else:
|
293 |
+
lm_hidden = None
|
294 |
+
lm_probs = None
|
295 |
+
|
296 |
+
# Sort the next possible output symbol by CTC (and LM) score
|
297 |
+
if self.apply_lm:
|
298 |
+
ctc_vocab_cand = sorted(zip(
|
299 |
+
self.vocab_range, ctc_output[t, self.vocab_range] + self.lm_w * lm_probs[self.vocab_range]),
|
300 |
+
reverse=True, key=lambda x: x[1])
|
301 |
+
else:
|
302 |
+
ctc_vocab_cand = sorted(zip(self.vocab_range, ctc_output[t, self.vocab_range]), reverse=True, key=lambda x: x[1])
|
303 |
+
# Select top K possible symbols to calculate the probabilities
|
304 |
+
for j in range(self.vocab_cand):
|
305 |
+
# <pad>=0, <eos>=1, <unk>=2
|
306 |
+
k = ctc_vocab_cand[j][0]
|
307 |
+
# Pr(k,t|x)
|
308 |
+
hyp_yk = copy.deepcopy(B_i_new)
|
309 |
+
lm_prob = 0.0 if not self.apply_lm else self.lm_w * lm_probs[k]
|
310 |
+
hyp_yk.add_token(k, ctc_output[t, k], lm_prob)
|
311 |
+
hyp_yk.updated_lm = False
|
312 |
+
B_new.append(hyp_yk)
|
313 |
+
B_i_new.orig_backup() # Retrieve origin prob. before add_token()
|
314 |
+
B_new.append(B_i_new)
|
315 |
+
del B
|
316 |
+
B = []
|
317 |
+
|
318 |
+
# Remove duplicated sequences by sorting first (O(NlogN))
|
319 |
+
B_new = sorted(B_new, key=lambda x: x.get_string())
|
320 |
+
B.append(B_new[0]) # First Hyp always unique
|
321 |
+
for i in range(1,len(B_new)):
|
322 |
+
if B_new[i].check_same(B[-1].y):
|
323 |
+
# Next Hyp is duplicated, pick the higher one
|
324 |
+
if B_new[i].get_score() > B[-1].get_score():
|
325 |
+
B[-1] = B_new[i]
|
326 |
+
continue
|
327 |
+
else:
|
328 |
+
# Next Hyp is different, hence valid
|
329 |
+
B.append(B_new[i])
|
330 |
+
del B_new
|
331 |
+
|
332 |
+
# Find top W possible sequences
|
333 |
+
if t == T - 1:
|
334 |
+
B = sorted(B, reverse=True, key=lambda x: x.get_final_score())
|
335 |
+
else:
|
336 |
+
B = sorted(B, reverse=True, key=lambda x: x.get_score())
|
337 |
+
if len(B) > self.beam_size:
|
338 |
+
B = B[:self.beam_size]
|
339 |
+
|
340 |
+
# Update LM states
|
341 |
+
if self.apply_lm and t < T - 1:
|
342 |
+
for i in range(len(B)):
|
343 |
+
if B[i].get_len() > 0 and not B[i].updated_lm:
|
344 |
+
output, hidden = \
|
345 |
+
self.lm(B[i].y[-1] * torch.ones((1,1), dtype=torch.long).to(self.device),
|
346 |
+
torch.ones(1,dtype=torch.long).to(self.device), B[i].lm_hidden)
|
347 |
+
B[i].update_lm(
|
348 |
+
(output).log_softmax(dim=-1).squeeze().cpu().numpy(),
|
349 |
+
hidden
|
350 |
+
)
|
351 |
+
|
352 |
+
return [b.y for b in B]
|
decode.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from src.lm import RNNLM
|
8 |
+
from src.ctc import CTCPrefixScore, LOG_ZERO
|
9 |
+
|
10 |
+
CTC_BEAM_RATIO = 1.5 # DO NOT CHANGE THIS, MAY CAUSE OOM
|
11 |
+
|
12 |
+
|
13 |
+
class BeamDecoder(nn.Module):
|
14 |
+
''' Beam decoder for ASR '''
|
15 |
+
|
16 |
+
def __init__(self, asr, emb_decoder, beam_size, min_len_ratio, max_len_ratio,
|
17 |
+
lm_path='', lm_config='', lm_weight=0.0, ctc_weight=0.0):
|
18 |
+
super().__init__()
|
19 |
+
# Setup
|
20 |
+
self.beam_size = beam_size
|
21 |
+
self.min_len_ratio = min_len_ratio
|
22 |
+
self.max_len_ratio = max_len_ratio
|
23 |
+
self.asr = asr
|
24 |
+
|
25 |
+
# ToDo : implement pure ctc decode
|
26 |
+
assert self.asr.enable_att
|
27 |
+
|
28 |
+
# Additional decoding modules
|
29 |
+
self.apply_ctc = ctc_weight > 0
|
30 |
+
if self.apply_ctc:
|
31 |
+
assert self.asr.ctc_weight > 0, 'ASR was not trained with CTC decoder'
|
32 |
+
self.ctc_w = ctc_weight
|
33 |
+
self.ctc_beam_size = int(CTC_BEAM_RATIO * self.beam_size)
|
34 |
+
|
35 |
+
self.apply_lm = lm_weight > 0
|
36 |
+
if self.apply_lm:
|
37 |
+
self.lm_w = lm_weight
|
38 |
+
self.lm_path = lm_path
|
39 |
+
lm_config = yaml.load(open(lm_config, 'r'), Loader=yaml.FullLoader)
|
40 |
+
self.lm = RNNLM(self.asr.vocab_size, **lm_config['model'])
|
41 |
+
self.lm.load_state_dict(torch.load(
|
42 |
+
self.lm_path, map_location='cpu')['model'])
|
43 |
+
self.lm.eval()
|
44 |
+
|
45 |
+
self.apply_emb = emb_decoder is not None
|
46 |
+
if self.apply_emb:
|
47 |
+
self.emb_decoder = emb_decoder
|
48 |
+
|
49 |
+
def create_msg(self):
|
50 |
+
msg = ['Decode spec| Beam size = {}\t| Min/Max len ratio = {}/{}'.format(
|
51 |
+
self.beam_size, self.min_len_ratio, self.max_len_ratio)]
|
52 |
+
if self.apply_ctc:
|
53 |
+
msg.append(
|
54 |
+
' |Joint CTC decoding enabled \t| weight = {:.2f}\t'.format(self.ctc_w))
|
55 |
+
if self.apply_lm:
|
56 |
+
msg.append(' |Joint LM decoding enabled \t| weight = {:.2f}\t| src = {}'.format(
|
57 |
+
self.lm_w, self.lm_path))
|
58 |
+
if self.apply_emb:
|
59 |
+
msg.append(' |Joint Emb. decoding enabled \t| weight = {:.2f}'.format(
|
60 |
+
self.lm_w, self.emb_decoder.fuse_lambda.mean().cpu().item()))
|
61 |
+
|
62 |
+
return msg
|
63 |
+
|
64 |
+
def forward(self, audio_feature, feature_len):
|
65 |
+
# Init.
|
66 |
+
assert audio_feature.shape[0] == 1, "Batchsize == 1 is required for beam search"
|
67 |
+
batch_size = audio_feature.shape[0]
|
68 |
+
device = audio_feature.device
|
69 |
+
dec_state = self.asr.decoder.init_state(
|
70 |
+
batch_size) # Init zero states
|
71 |
+
self.asr.attention.reset_mem() # Flush attention mem
|
72 |
+
# Max output len set w/ hyper param.
|
73 |
+
max_output_len = int(
|
74 |
+
np.ceil(feature_len.cpu().item()*self.max_len_ratio))
|
75 |
+
# Min output len set w/ hyper param.
|
76 |
+
min_output_len = int(
|
77 |
+
np.ceil(feature_len.cpu().item()*self.min_len_ratio))
|
78 |
+
# Store attention map if location-aware
|
79 |
+
store_att = self.asr.attention.mode == 'loc'
|
80 |
+
prev_token = torch.zeros(
|
81 |
+
(batch_size, 1), dtype=torch.long, device=device) # Start w/ <sos>
|
82 |
+
# Cache of beam search
|
83 |
+
final_hypothesis, next_top_hypothesis = [], []
|
84 |
+
# Incase ctc is disabled
|
85 |
+
ctc_state, ctc_prob, candidates, lm_state = None, None, None, None
|
86 |
+
|
87 |
+
# Encode
|
88 |
+
encode_feature, encode_len = self.asr.encoder(
|
89 |
+
audio_feature, feature_len)
|
90 |
+
|
91 |
+
# CTC decoding
|
92 |
+
if self.apply_ctc:
|
93 |
+
ctc_output = F.log_softmax(
|
94 |
+
self.asr.ctc_layer(encode_feature), dim=-1)
|
95 |
+
ctc_prefix = CTCPrefixScore(ctc_output)
|
96 |
+
ctc_state = ctc_prefix.init_state()
|
97 |
+
|
98 |
+
# Start w/ empty hypothesis
|
99 |
+
prev_top_hypothesis = [Hypothesis(decoder_state=dec_state, output_seq=[],
|
100 |
+
output_scores=[], lm_state=None, ctc_prob=0,
|
101 |
+
ctc_state=ctc_state, att_map=None)]
|
102 |
+
# Attention decoding
|
103 |
+
for t in range(max_output_len):
|
104 |
+
for hypothesis in prev_top_hypothesis:
|
105 |
+
# Resume previous step
|
106 |
+
prev_token, prev_dec_state, prev_attn, prev_lm_state, prev_ctc_state = hypothesis.get_state(
|
107 |
+
device)
|
108 |
+
self.asr.set_state(prev_dec_state, prev_attn)
|
109 |
+
|
110 |
+
# Normal asr forward
|
111 |
+
attn, context = self.asr.attention(
|
112 |
+
self.asr.decoder.get_query(), encode_feature, encode_len)
|
113 |
+
asr_prev_token = self.asr.pre_embed(prev_token)
|
114 |
+
decoder_input = torch.cat([asr_prev_token, context], dim=-1)
|
115 |
+
cur_prob, d_state = self.asr.decoder(decoder_input)
|
116 |
+
|
117 |
+
# Embedding fusion (output shape 1xV)
|
118 |
+
if self.apply_emb:
|
119 |
+
_, cur_prob = self.emb_decoder( d_state, cur_prob, return_loss=False)
|
120 |
+
else:
|
121 |
+
cur_prob = F.log_softmax(cur_prob, dim=-1)
|
122 |
+
|
123 |
+
# Perform CTC prefix scoring on limited candidates (else OOM easily)
|
124 |
+
if self.apply_ctc:
|
125 |
+
# TODO : Check the performance drop for computing part of candidates only
|
126 |
+
_, ctc_candidates = cur_prob.squeeze(0).topk(self.ctc_beam_size, dim=-1)
|
127 |
+
candidates = ctc_candidates.cpu().tolist()
|
128 |
+
ctc_prob, ctc_state = ctc_prefix.cheap_compute(
|
129 |
+
hypothesis.outIndex, prev_ctc_state, candidates)
|
130 |
+
# TODO : study why ctc_char (slightly) > 0 sometimes
|
131 |
+
ctc_char = torch.FloatTensor(ctc_prob - hypothesis.ctc_prob).to(device)
|
132 |
+
|
133 |
+
# Combine CTC score and Attention score (HACK: focus on candidates, block others)
|
134 |
+
hack_ctc_char = torch.zeros_like(cur_prob).data.fill_(LOG_ZERO)
|
135 |
+
for idx, char in enumerate(candidates):
|
136 |
+
hack_ctc_char[0, char] = ctc_char[idx]
|
137 |
+
cur_prob = (1-self.ctc_w)*cur_prob + self.ctc_w*hack_ctc_char # ctc_char
|
138 |
+
cur_prob[0, 0] = LOG_ZERO # Hack to ignore <sos>
|
139 |
+
|
140 |
+
# Joint RNN-LM decoding
|
141 |
+
if self.apply_lm:
|
142 |
+
# assuming batch size always 1, resulting 1x1
|
143 |
+
lm_input = prev_token.unsqueeze(1)
|
144 |
+
lm_output, lm_state = self.lm(
|
145 |
+
lm_input, torch.ones([batch_size]), hidden=prev_lm_state)
|
146 |
+
# assuming batch size always 1, resulting 1xV
|
147 |
+
lm_output = lm_output.squeeze(0)
|
148 |
+
cur_prob += self.lm_w*lm_output.log_softmax(dim=-1)
|
149 |
+
|
150 |
+
# Beam search
|
151 |
+
# Note: Ignored batch dim.
|
152 |
+
topv, topi = cur_prob.squeeze(0).topk(self.beam_size)
|
153 |
+
prev_attn = self.asr.attention.att_layer.prev_att.cpu() if store_att else None
|
154 |
+
final, top = hypothesis.addTopk(topi, topv, self.asr.decoder.get_state(), att_map=prev_attn,
|
155 |
+
lm_state=lm_state, ctc_state=ctc_state, ctc_prob=ctc_prob,
|
156 |
+
ctc_candidates=candidates)
|
157 |
+
# Move complete hyps. out
|
158 |
+
if final is not None and (t >= min_output_len):
|
159 |
+
final_hypothesis.append(final)
|
160 |
+
if self.beam_size == 1:
|
161 |
+
return final_hypothesis
|
162 |
+
next_top_hypothesis.extend(top)
|
163 |
+
|
164 |
+
# Sort for top N beams
|
165 |
+
next_top_hypothesis.sort(key=lambda o: o.avgScore(), reverse=True)
|
166 |
+
prev_top_hypothesis = next_top_hypothesis[:self.beam_size]
|
167 |
+
next_top_hypothesis = []
|
168 |
+
|
169 |
+
# Rescore all hyp (finished/unfinished)
|
170 |
+
final_hypothesis += prev_top_hypothesis
|
171 |
+
final_hypothesis.sort(key=lambda o: o.avgScore(), reverse=True)
|
172 |
+
|
173 |
+
return final_hypothesis[:self.beam_size]
|
174 |
+
|
175 |
+
|
176 |
+
class Hypothesis:
|
177 |
+
'''Hypothesis for beam search decoding.
|
178 |
+
Stores the history of label sequence & score
|
179 |
+
Stores the previous decoder state, ctc state, ctc score, lm state and attention map (if necessary)'''
|
180 |
+
|
181 |
+
def __init__(self, decoder_state, output_seq, output_scores, lm_state, ctc_state, ctc_prob, att_map):
|
182 |
+
assert len(output_seq) == len(output_scores)
|
183 |
+
# attention decoder
|
184 |
+
self.decoder_state = decoder_state
|
185 |
+
self.att_map = att_map
|
186 |
+
|
187 |
+
# RNN language model
|
188 |
+
if type(lm_state) is tuple:
|
189 |
+
self.lm_state = (lm_state[0].cpu(),
|
190 |
+
lm_state[1].cpu()) # LSTM state
|
191 |
+
elif lm_state is None:
|
192 |
+
self.lm_state = None # Init state
|
193 |
+
else:
|
194 |
+
self.lm_state = lm_state.cpu() # GRU state
|
195 |
+
|
196 |
+
# Previous outputs
|
197 |
+
self.output_seq = output_seq # Prefix, List of list
|
198 |
+
self.output_scores = output_scores # Prefix score, list of float
|
199 |
+
|
200 |
+
# CTC decoding
|
201 |
+
self.ctc_state = ctc_state # List of np
|
202 |
+
self.ctc_prob = ctc_prob # List of float
|
203 |
+
|
204 |
+
def avgScore(self):
|
205 |
+
'''Return the averaged log probability of hypothesis'''
|
206 |
+
assert len(self.output_scores) != 0
|
207 |
+
return sum(self.output_scores) / len(self.output_scores)
|
208 |
+
|
209 |
+
def addTopk(self, topi, topv, decoder_state, att_map=None,
|
210 |
+
lm_state=None, ctc_state=None, ctc_prob=0.0, ctc_candidates=[]):
|
211 |
+
'''Expand current hypothesis with a given beam size'''
|
212 |
+
new_hypothesis = []
|
213 |
+
term_score = None
|
214 |
+
ctc_s, ctc_p = None, None
|
215 |
+
beam_size = topi.shape[-1]
|
216 |
+
|
217 |
+
for i in range(beam_size):
|
218 |
+
# Detect <eos>
|
219 |
+
if topi[i].item() == 1:
|
220 |
+
term_score = topv[i].cpu()
|
221 |
+
continue
|
222 |
+
|
223 |
+
idxes = self.output_seq[:] # pass by value
|
224 |
+
scores = self.output_scores[:] # pass by value
|
225 |
+
idxes.append(topi[i].cpu())
|
226 |
+
scores.append(topv[i].cpu())
|
227 |
+
if ctc_state is not None:
|
228 |
+
# ToDo: Handle out-of-candidate case.
|
229 |
+
idx = ctc_candidates.index(topi[i].item())
|
230 |
+
ctc_s = ctc_state[idx, :, :]
|
231 |
+
ctc_p = ctc_prob[idx]
|
232 |
+
new_hypothesis.append(Hypothesis(decoder_state,
|
233 |
+
output_seq=idxes, output_scores=scores, lm_state=lm_state,
|
234 |
+
ctc_state=ctc_s, ctc_prob=ctc_p, att_map=att_map))
|
235 |
+
if term_score is not None:
|
236 |
+
self.output_seq.append(torch.tensor(1))
|
237 |
+
self.output_scores.append(term_score)
|
238 |
+
return self, new_hypothesis
|
239 |
+
return None, new_hypothesis
|
240 |
+
|
241 |
+
def get_state(self, device):
|
242 |
+
prev_token = self.output_seq[-1] if len(self.output_seq) != 0 else 0
|
243 |
+
prev_token = torch.LongTensor([prev_token]).to(device)
|
244 |
+
att_map = self.att_map.to(device) if self.att_map is not None else None
|
245 |
+
if type(self.lm_state) is tuple:
|
246 |
+
lm_state = (self.lm_state[0].to(device),
|
247 |
+
self.lm_state[1].to(device)) # LSTM state
|
248 |
+
elif self.lm_state is None:
|
249 |
+
lm_state = None # Init state
|
250 |
+
else:
|
251 |
+
lm_state = self.lm_state.to(
|
252 |
+
device) # GRU state
|
253 |
+
return prev_token, self.decoder_state, att_map, lm_state, self.ctc_state
|
254 |
+
|
255 |
+
@property
|
256 |
+
def outIndex(self):
|
257 |
+
return [i.item() for i in self.output_seq]
|