davidadamczyk's picture
Add precision and hf_model_id
ebe77ac
raw
history blame
6.37 kB
import json
import os
from glob import glob
from datetime import datetime, timezone
import numpy as np
import pandas as pd
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, RESULTS_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
from src.display.utils import (
BENCHMARK_COLS,
COLS
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
eval_name: str,
upload: object,
precision: str,
hf_model_id: str,
contact_email: str
):
with open(upload, mode="r") as f:
data = json.load(f)
results = data['results']
acc_keys = ['exact_match,none', 'exact_match,flexible-extract', 'exact_match,strict-match']
ret = {
'eval_name': eval_name,
'precision': precision,
'hf_model_id': hf_model_id,
'contact_email': contact_email
}
for k, v in results.items():
for acc_k in acc_keys:
if acc_k in v and k in BENCHMARK_COLS:
ret[k] = v[acc_k]
#validation
for k,v in ret.items():
if k in ['eval_name', 'precision', 'hf_model_id', 'contact_email']:
continue
if k not in BENCHMARK_COLS:
print(f"Missing: {k}")
return styled_error(f'Missing: {k}')
if len(BENCHMARK_COLS) != len(ret) - 4:
print(f"Missing columns")
return styled_error(f'Missing columns')
# TODO add complex validation
#print(results.keys())
#print(BENCHMARK_COLS)
#for input_col in results.keys():
# if input_col not in BENCHMARK_COLS:
# print(input_col)
# return styled_error(f'Missing: {input_col}')
#ret.update({i:j['acc,none'] for i,j in results.items()})
# fake data for testing...
#ret.update({i:round(np.random.normal(1, 0.5, 1)[0], 2) for i,j in results.items()})
user_name = "czechbench_leaderboard"
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
existing_eval_names = []
for fname in glob(f"{OUT_DIR}/*.json"):
with open(fname, mode="r") as f:
existing_eval = json.load(f)
existing_eval_names.append(existing_eval['eval_name'])
if ret['eval_name'] in existing_eval_names:
print(f"Model name {ret['eval_name']} is used!")
return styled_error(f"Model name {ret['eval_name']} is used!")
out_path = f"{OUT_DIR}/{eval_name}_eval_request.json"
with open(out_path, "w") as f:
f.write(json.dumps(ret))
print("Uploading eval file")
print("path_or_fileobj: ", out_path)
print("path_in_repo: ",out_path.split("eval-queue/")[1])
print("repo_id: ", RESULTS_REPO)
print("repo_type: ", "dataset")
response = API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=RESULTS_REPO,
repo_type="dataset",
commit_message=f"Add {eval_name} to eval queue",
)
"""
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(
model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True
)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
"""
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
), "", "", "", ""