File size: 6,370 Bytes
df66f6e 8fae53c 2a5f9fb 657d04f 535d0d5 df66f6e 657d04f 2a5f9fb df66f6e 2a5f9fb 657d04f 976f398 2a5f9fb ec84a57 2a5f9fb 657d04f ebe77ac 2a5f9fb ebe77ac 657d04f 8fae53c ebe77ac 8fae53c ebe77ac 8fae53c ebe77ac 8fae53c 657d04f 8fae53c 489ee3a 657d04f 8fae53c 657d04f 8fae53c 657d04f ebe77ac 657d04f 976f398 9d22eee 976f398 2a5f9fb ec84a57 2a5f9fb 7302987 2a5f9fb 976f398 2a5f9fb 9833cdb 2a5f9fb 657d04f 2a5f9fb ebe77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import json
import os
from glob import glob
from datetime import datetime, timezone
import numpy as np
import pandas as pd
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, RESULTS_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
from src.display.utils import (
BENCHMARK_COLS,
COLS
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
eval_name: str,
upload: object,
precision: str,
hf_model_id: str,
contact_email: str
):
with open(upload, mode="r") as f:
data = json.load(f)
results = data['results']
acc_keys = ['exact_match,none', 'exact_match,flexible-extract', 'exact_match,strict-match']
ret = {
'eval_name': eval_name,
'precision': precision,
'hf_model_id': hf_model_id,
'contact_email': contact_email
}
for k, v in results.items():
for acc_k in acc_keys:
if acc_k in v and k in BENCHMARK_COLS:
ret[k] = v[acc_k]
#validation
for k,v in ret.items():
if k in ['eval_name', 'precision', 'hf_model_id', 'contact_email']:
continue
if k not in BENCHMARK_COLS:
print(f"Missing: {k}")
return styled_error(f'Missing: {k}')
if len(BENCHMARK_COLS) != len(ret) - 4:
print(f"Missing columns")
return styled_error(f'Missing columns')
# TODO add complex validation
#print(results.keys())
#print(BENCHMARK_COLS)
#for input_col in results.keys():
# if input_col not in BENCHMARK_COLS:
# print(input_col)
# return styled_error(f'Missing: {input_col}')
#ret.update({i:j['acc,none'] for i,j in results.items()})
# fake data for testing...
#ret.update({i:round(np.random.normal(1, 0.5, 1)[0], 2) for i,j in results.items()})
user_name = "czechbench_leaderboard"
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
existing_eval_names = []
for fname in glob(f"{OUT_DIR}/*.json"):
with open(fname, mode="r") as f:
existing_eval = json.load(f)
existing_eval_names.append(existing_eval['eval_name'])
if ret['eval_name'] in existing_eval_names:
print(f"Model name {ret['eval_name']} is used!")
return styled_error(f"Model name {ret['eval_name']} is used!")
out_path = f"{OUT_DIR}/{eval_name}_eval_request.json"
with open(out_path, "w") as f:
f.write(json.dumps(ret))
print("Uploading eval file")
print("path_or_fileobj: ", out_path)
print("path_in_repo: ",out_path.split("eval-queue/")[1])
print("repo_id: ", RESULTS_REPO)
print("repo_type: ", "dataset")
response = API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=RESULTS_REPO,
repo_type="dataset",
commit_message=f"Add {eval_name} to eval queue",
)
"""
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(
model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True
)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
"""
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
), "", "", "", ""
|