File size: 3,151 Bytes
941a9ef
 
cea6930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941a9ef
 
 
cea6930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941a9ef
cea6930
 
941a9ef
cea6930
 
 
 
 
941a9ef
411541a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import pandas as pd
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter

TITLE = "<h1>M-RewardBench Leaderboard</h1>"
INTRODUCTION_TEXT = "https://m-rewardbench.github.io/"
GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1qrD7plUdrBwAw7G6UeDVZAaV9ihxaNAcoiKwSaqotR4/export?gid=0&format=csv"
ABOUT_TEXT = """Welcome to M-RewardBench Leaderboard!"""


class AutoEvalColumn:
  model = {
    "name": "Model",
    "type": "markdown",
    "displayed_by_default": True,
    "never_hidden": True,
  }
  
  model_type = {
    "name": "Model_Type",
    "type": "markdown",
    "displayed_by_default": True,
    "never_hidden": True,
  }
  
  eng_Latn = {
    "name": "eng_Latn",
    "type": "float",
    "displayed_by_default": True,
    "never_hidden": False,
  }
  
  Avg_Multilingual = {
    "name": "Avg_Multilingual",
    "type": "float",
    "displayed_by_default": True,
    "never_hidden": False,
  }
  
  arb_Arab = {
    "name": "arb_Arab",
    "type": "float",
    "displayed_by_default": True,
    "never_hidden": False,
  }
  
  tur_Latn = {
    "name": "tur_Latn",
    "type": "float",
    "displayed_by_default": True,
    "never_hidden": False,
  }
  
  rus_Cyrl = {
    "name": "rus_Cyrl",
    "type": "float",
    "displayed_by_default": True,
    "never_hidden": False,
  }
  
  ces_Latn = {
    "name": "ces_Latn",
    "type": "float",
    "displayed_by_default": True,
    "never_hidden": False,
  }
  
  pol_Latn = {
    "name": "pol_Latn",
    "type": "float",
    "displayed_by_default": True,
    "never_hidden": False,
  }
  
  kor_Hang = {
    "name": "kor_Hang",
    "type": "float",
    "displayed_by_default": True,
    "never_hidden": False,
  }					


def get_result_data():
  return pd.read_csv(GOOGLE_SHEET_URL)


def init_leaderboard(dataframe):
  if dataframe is None or dataframe.empty:
    raise ValueError("Leaderboard DataFrame is empty or None.")

  return Leaderboard(
    value=dataframe,
    datatype=[
      col["type"]
      for col in AutoEvalColumn.__dict__.values()
      if isinstance(col, dict)
    ],
    select_columns=SelectColumns(
      default_selection=[
        col["name"]
        for col in AutoEvalColumn.__dict__.values()
        if isinstance(col, dict) and col["displayed_by_default"]
      ],
      cant_deselect=[
        col["name"]
        for col in AutoEvalColumn.__dict__.values()
        if isinstance(col, dict) and col.get("never_hidden", False)
      ],
      label="Select Columns to Display:",
    ),
    search_columns=["Model"],
    interactive=False,
  )


def format_model_link(row):
  """Format model name as HTML link if URL is available"""
  model_name = row["Model"]
  # url = row.get("URL", "")
  # if pd.notna(url) and url.strip():
  #   return f'<a href="{url}" target="_blank">{model_name}</a>'
  return model_name


demo = gr.Blocks()
with demo:
  gr.HTML(TITLE)
  gr.Markdown(INTRODUCTION_TEXT)

  with gr.Tabs() as tabs:
    with gr.TabItem("🏅 Leaderboard"):
      df = get_result_data()
      df["Model"] = df.apply(format_model_link, axis=1)
      leaderboard = init_leaderboard(df)

demo.launch(ssr_mode=False)