Spaces:
Running
Running
Update app.py
Browse filesInitial version; without translation subset
app.py
CHANGED
@@ -1,204 +1,136 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
-
from
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
from src.about import (
|
8 |
-
CITATION_BUTTON_LABEL,
|
9 |
-
CITATION_BUTTON_TEXT,
|
10 |
-
EVALUATION_QUEUE_TEXT,
|
11 |
-
INTRODUCTION_TEXT,
|
12 |
-
LLM_BENCHMARKS_TEXT,
|
13 |
-
TITLE,
|
14 |
-
)
|
15 |
-
from src.display.css_html_js import custom_css
|
16 |
-
from src.display.utils import (
|
17 |
-
BENCHMARK_COLS,
|
18 |
-
COLS,
|
19 |
-
EVAL_COLS,
|
20 |
-
EVAL_TYPES,
|
21 |
-
AutoEvalColumn,
|
22 |
-
ModelType,
|
23 |
-
fields,
|
24 |
-
WeightType,
|
25 |
-
Precision
|
26 |
-
)
|
27 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
29 |
-
from src.submission.submit import add_new_eval
|
30 |
-
|
31 |
-
|
32 |
-
def restart_space():
|
33 |
-
API.restart_space(repo_id=REPO_ID)
|
34 |
-
|
35 |
-
### Space initialisation
|
36 |
-
try:
|
37 |
-
print(EVAL_REQUESTS_PATH)
|
38 |
-
snapshot_download(
|
39 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
40 |
-
)
|
41 |
-
except Exception:
|
42 |
-
restart_space()
|
43 |
-
try:
|
44 |
-
print(EVAL_RESULTS_PATH)
|
45 |
-
snapshot_download(
|
46 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
47 |
-
)
|
48 |
-
except Exception:
|
49 |
-
restart_space()
|
50 |
-
|
51 |
-
|
52 |
-
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
53 |
-
|
54 |
-
(
|
55 |
-
finished_eval_queue_df,
|
56 |
-
running_eval_queue_df,
|
57 |
-
pending_eval_queue_df,
|
58 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
60 |
def init_leaderboard(dataframe):
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
with demo:
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
-
|
101 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
-
|
104 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
105 |
-
with gr.Column():
|
106 |
-
with gr.Row():
|
107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
-
|
109 |
-
with gr.Column():
|
110 |
-
with gr.Accordion(
|
111 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
112 |
-
open=False,
|
113 |
-
):
|
114 |
-
with gr.Row():
|
115 |
-
finished_eval_table = gr.components.Dataframe(
|
116 |
-
value=finished_eval_queue_df,
|
117 |
-
headers=EVAL_COLS,
|
118 |
-
datatype=EVAL_TYPES,
|
119 |
-
row_count=5,
|
120 |
-
)
|
121 |
-
with gr.Accordion(
|
122 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
123 |
-
open=False,
|
124 |
-
):
|
125 |
-
with gr.Row():
|
126 |
-
running_eval_table = gr.components.Dataframe(
|
127 |
-
value=running_eval_queue_df,
|
128 |
-
headers=EVAL_COLS,
|
129 |
-
datatype=EVAL_TYPES,
|
130 |
-
row_count=5,
|
131 |
-
)
|
132 |
-
|
133 |
-
with gr.Accordion(
|
134 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
135 |
-
open=False,
|
136 |
-
):
|
137 |
-
with gr.Row():
|
138 |
-
pending_eval_table = gr.components.Dataframe(
|
139 |
-
value=pending_eval_queue_df,
|
140 |
-
headers=EVAL_COLS,
|
141 |
-
datatype=EVAL_TYPES,
|
142 |
-
row_count=5,
|
143 |
-
)
|
144 |
-
with gr.Row():
|
145 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
146 |
-
|
147 |
-
with gr.Row():
|
148 |
-
with gr.Column():
|
149 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
151 |
-
model_type = gr.Dropdown(
|
152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
153 |
-
label="Model type",
|
154 |
-
multiselect=False,
|
155 |
-
value=None,
|
156 |
-
interactive=True,
|
157 |
-
)
|
158 |
-
|
159 |
-
with gr.Column():
|
160 |
-
precision = gr.Dropdown(
|
161 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
-
label="Precision",
|
163 |
-
multiselect=False,
|
164 |
-
value="float16",
|
165 |
-
interactive=True,
|
166 |
-
)
|
167 |
-
weight_type = gr.Dropdown(
|
168 |
-
choices=[i.value.name for i in WeightType],
|
169 |
-
label="Weights type",
|
170 |
-
multiselect=False,
|
171 |
-
value="Original",
|
172 |
-
interactive=True,
|
173 |
-
)
|
174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
-
|
176 |
-
submit_button = gr.Button("Submit Eval")
|
177 |
-
submission_result = gr.Markdown()
|
178 |
-
submit_button.click(
|
179 |
-
add_new_eval,
|
180 |
-
[
|
181 |
-
model_name_textbox,
|
182 |
-
base_model_name_textbox,
|
183 |
-
revision_name_textbox,
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
-
model_type,
|
187 |
-
],
|
188 |
-
submission_result,
|
189 |
-
)
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
lines=20,
|
197 |
-
elem_id="citation-button",
|
198 |
-
show_copy_button=True,
|
199 |
-
)
|
200 |
|
201 |
-
|
202 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
-
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
+
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
|
4 |
+
|
5 |
+
TITLE = "<h1>M-RewardBench Leaderboard</h1>"
|
6 |
+
INTRODUCTION_TEXT = "https://m-rewardbench.github.io/"
|
7 |
+
GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1qrD7plUdrBwAw7G6UeDVZAaV9ihxaNAcoiKwSaqotR4/export?gid=0&format=csv"
|
8 |
+
ABOUT_TEXT = """Welcome to M-RewardBench Leaderboard!"""
|
9 |
+
|
10 |
+
|
11 |
+
class AutoEvalColumn:
|
12 |
+
model = {
|
13 |
+
"name": "Model",
|
14 |
+
"type": "markdown",
|
15 |
+
"displayed_by_default": True,
|
16 |
+
"never_hidden": True,
|
17 |
+
}
|
18 |
+
|
19 |
+
model_type = {
|
20 |
+
"name": "Model_Type",
|
21 |
+
"type": "markdown",
|
22 |
+
"displayed_by_default": True,
|
23 |
+
"never_hidden": True,
|
24 |
+
}
|
25 |
+
|
26 |
+
eng_Latn = {
|
27 |
+
"name": "eng_Latn",
|
28 |
+
"type": "float",
|
29 |
+
"displayed_by_default": True,
|
30 |
+
"never_hidden": False,
|
31 |
+
}
|
32 |
+
|
33 |
+
Avg_Multilingual = {
|
34 |
+
"name": "Avg_Multilingual",
|
35 |
+
"type": "float",
|
36 |
+
"displayed_by_default": True,
|
37 |
+
"never_hidden": False,
|
38 |
+
}
|
39 |
+
|
40 |
+
arb_Arab = {
|
41 |
+
"name": "arb_Arab",
|
42 |
+
"type": "float",
|
43 |
+
"displayed_by_default": True,
|
44 |
+
"never_hidden": False,
|
45 |
+
}
|
46 |
+
|
47 |
+
tur_Latn = {
|
48 |
+
"name": "tur_Latn",
|
49 |
+
"type": "float",
|
50 |
+
"displayed_by_default": True,
|
51 |
+
"never_hidden": False,
|
52 |
+
}
|
53 |
+
|
54 |
+
rus_Cyrl = {
|
55 |
+
"name": "rus_Cyrl",
|
56 |
+
"type": "float",
|
57 |
+
"displayed_by_default": True,
|
58 |
+
"never_hidden": False,
|
59 |
+
}
|
60 |
+
|
61 |
+
ces_Latn = {
|
62 |
+
"name": "ces_Latn",
|
63 |
+
"type": "float",
|
64 |
+
"displayed_by_default": True,
|
65 |
+
"never_hidden": False,
|
66 |
+
}
|
67 |
+
|
68 |
+
pol_Latn = {
|
69 |
+
"name": "pol_Latn",
|
70 |
+
"type": "float",
|
71 |
+
"displayed_by_default": True,
|
72 |
+
"never_hidden": False,
|
73 |
+
}
|
74 |
+
|
75 |
+
kor_Hang = {
|
76 |
+
"name": "kor_Hang",
|
77 |
+
"type": "float",
|
78 |
+
"displayed_by_default": True,
|
79 |
+
"never_hidden": False,
|
80 |
+
}
|
81 |
+
|
82 |
+
|
83 |
+
def get_result_data():
|
84 |
+
return pd.read_csv(GOOGLE_SHEET_URL)
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
def init_leaderboard(dataframe):
|
88 |
+
if dataframe is None or dataframe.empty:
|
89 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
90 |
+
|
91 |
+
return Leaderboard(
|
92 |
+
value=dataframe,
|
93 |
+
datatype=[
|
94 |
+
col["type"]
|
95 |
+
for col in AutoEvalColumn.__dict__.values()
|
96 |
+
if isinstance(col, dict)
|
97 |
+
],
|
98 |
+
select_columns=SelectColumns(
|
99 |
+
default_selection=[
|
100 |
+
col["name"]
|
101 |
+
for col in AutoEvalColumn.__dict__.values()
|
102 |
+
if isinstance(col, dict) and col["displayed_by_default"]
|
103 |
+
],
|
104 |
+
cant_deselect=[
|
105 |
+
col["name"]
|
106 |
+
for col in AutoEvalColumn.__dict__.values()
|
107 |
+
if isinstance(col, dict) and col.get("never_hidden", False)
|
108 |
+
],
|
109 |
+
label="Select Columns to Display:",
|
110 |
+
),
|
111 |
+
search_columns=["Model"],
|
112 |
+
interactive=False,
|
113 |
+
)
|
114 |
+
|
115 |
+
|
116 |
+
def format_model_link(row):
|
117 |
+
"""Format model name as HTML link if URL is available"""
|
118 |
+
model_name = row["Model"]
|
119 |
+
# url = row.get("URL", "")
|
120 |
+
# if pd.notna(url) and url.strip():
|
121 |
+
# return f'<a href="{url}" target="_blank">{model_name}</a>'
|
122 |
+
return model_name
|
123 |
+
|
124 |
+
|
125 |
+
demo = gr.Blocks()
|
126 |
with demo:
|
127 |
+
gr.HTML(TITLE)
|
128 |
+
gr.Markdown(INTRODUCTION_TEXT)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
with gr.Tabs() as tabs:
|
131 |
+
with gr.TabItem("🏅 Leaderboard"):
|
132 |
+
df = get_result_data()
|
133 |
+
df["Model"] = df.apply(format_model_link, axis=1)
|
134 |
+
leaderboard = init_leaderboard(df)
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
demo.launch()
|
|
|
|
|
|