shayekh commited on
Commit
cea6930
·
verified ·
1 Parent(s): 0dabe05

Update app.py

Browse files

Initial version; without translation subset

Files changed (1) hide show
  1. app.py +128 -196
app.py CHANGED
@@ -1,204 +1,136 @@
1
  import gradio as gr
2
- from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
  import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- AutoEvalColumn,
22
- ModelType,
23
- fields,
24
- WeightType,
25
- Precision
26
- )
27
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
- from src.submission.submit import add_new_eval
30
-
31
-
32
- def restart_space():
33
- API.restart_space(repo_id=REPO_ID)
34
-
35
- ### Space initialisation
36
- try:
37
- print(EVAL_REQUESTS_PATH)
38
- snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
- )
41
- except Exception:
42
- restart_space()
43
- try:
44
- print(EVAL_RESULTS_PATH)
45
- snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
- )
48
- except Exception:
49
- restart_space()
50
-
51
-
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
-
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
 
60
  def init_leaderboard(dataframe):
61
- if dataframe is None or dataframe.empty:
62
- raise ValueError("Leaderboard DataFrame is empty or None.")
63
- return Leaderboard(
64
- value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
- select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
- ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
- filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
- ],
87
- bool_checkboxgroup_label="Hide models",
88
- interactive=False,
89
- )
90
-
91
-
92
- demo = gr.Blocks(css=custom_css)
 
 
 
 
 
 
93
  with demo:
94
- gr.HTML(TITLE)
95
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
-
97
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
100
-
101
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
-
104
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
- with gr.Column():
106
- with gr.Row():
107
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
108
-
109
- with gr.Column():
110
- with gr.Accordion(
111
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
112
- open=False,
113
- ):
114
- with gr.Row():
115
- finished_eval_table = gr.components.Dataframe(
116
- value=finished_eval_queue_df,
117
- headers=EVAL_COLS,
118
- datatype=EVAL_TYPES,
119
- row_count=5,
120
- )
121
- with gr.Accordion(
122
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
123
- open=False,
124
- ):
125
- with gr.Row():
126
- running_eval_table = gr.components.Dataframe(
127
- value=running_eval_queue_df,
128
- headers=EVAL_COLS,
129
- datatype=EVAL_TYPES,
130
- row_count=5,
131
- )
132
-
133
- with gr.Accordion(
134
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
135
- open=False,
136
- ):
137
- with gr.Row():
138
- pending_eval_table = gr.components.Dataframe(
139
- value=pending_eval_queue_df,
140
- headers=EVAL_COLS,
141
- datatype=EVAL_TYPES,
142
- row_count=5,
143
- )
144
- with gr.Row():
145
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
146
-
147
- with gr.Row():
148
- with gr.Column():
149
- model_name_textbox = gr.Textbox(label="Model name")
150
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
151
- model_type = gr.Dropdown(
152
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
153
- label="Model type",
154
- multiselect=False,
155
- value=None,
156
- interactive=True,
157
- )
158
-
159
- with gr.Column():
160
- precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
- label="Precision",
163
- multiselect=False,
164
- value="float16",
165
- interactive=True,
166
- )
167
- weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
- label="Weights type",
170
- multiselect=False,
171
- value="Original",
172
- interactive=True,
173
- )
174
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
-
176
- submit_button = gr.Button("Submit Eval")
177
- submission_result = gr.Markdown()
178
- submit_button.click(
179
- add_new_eval,
180
- [
181
- model_name_textbox,
182
- base_model_name_textbox,
183
- revision_name_textbox,
184
- precision,
185
- weight_type,
186
- model_type,
187
- ],
188
- submission_result,
189
- )
190
 
191
- with gr.Row():
192
- with gr.Accordion("📙 Citation", open=False):
193
- citation_button = gr.Textbox(
194
- value=CITATION_BUTTON_TEXT,
195
- label=CITATION_BUTTON_LABEL,
196
- lines=20,
197
- elem_id="citation-button",
198
- show_copy_button=True,
199
- )
200
 
201
- scheduler = BackgroundScheduler()
202
- scheduler.add_job(restart_space, "interval", seconds=1800)
203
- scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
1
  import gradio as gr
 
2
  import pandas as pd
3
+ from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
4
+
5
+ TITLE = "<h1>M-RewardBench Leaderboard</h1>"
6
+ INTRODUCTION_TEXT = "https://m-rewardbench.github.io/"
7
+ GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1qrD7plUdrBwAw7G6UeDVZAaV9ihxaNAcoiKwSaqotR4/export?gid=0&format=csv"
8
+ ABOUT_TEXT = """Welcome to M-RewardBench Leaderboard!"""
9
+
10
+
11
+ class AutoEvalColumn:
12
+ model = {
13
+ "name": "Model",
14
+ "type": "markdown",
15
+ "displayed_by_default": True,
16
+ "never_hidden": True,
17
+ }
18
+
19
+ model_type = {
20
+ "name": "Model_Type",
21
+ "type": "markdown",
22
+ "displayed_by_default": True,
23
+ "never_hidden": True,
24
+ }
25
+
26
+ eng_Latn = {
27
+ "name": "eng_Latn",
28
+ "type": "float",
29
+ "displayed_by_default": True,
30
+ "never_hidden": False,
31
+ }
32
+
33
+ Avg_Multilingual = {
34
+ "name": "Avg_Multilingual",
35
+ "type": "float",
36
+ "displayed_by_default": True,
37
+ "never_hidden": False,
38
+ }
39
+
40
+ arb_Arab = {
41
+ "name": "arb_Arab",
42
+ "type": "float",
43
+ "displayed_by_default": True,
44
+ "never_hidden": False,
45
+ }
46
+
47
+ tur_Latn = {
48
+ "name": "tur_Latn",
49
+ "type": "float",
50
+ "displayed_by_default": True,
51
+ "never_hidden": False,
52
+ }
53
+
54
+ rus_Cyrl = {
55
+ "name": "rus_Cyrl",
56
+ "type": "float",
57
+ "displayed_by_default": True,
58
+ "never_hidden": False,
59
+ }
60
+
61
+ ces_Latn = {
62
+ "name": "ces_Latn",
63
+ "type": "float",
64
+ "displayed_by_default": True,
65
+ "never_hidden": False,
66
+ }
67
+
68
+ pol_Latn = {
69
+ "name": "pol_Latn",
70
+ "type": "float",
71
+ "displayed_by_default": True,
72
+ "never_hidden": False,
73
+ }
74
+
75
+ kor_Hang = {
76
+ "name": "kor_Hang",
77
+ "type": "float",
78
+ "displayed_by_default": True,
79
+ "never_hidden": False,
80
+ }
81
+
82
+
83
+ def get_result_data():
84
+ return pd.read_csv(GOOGLE_SHEET_URL)
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
  def init_leaderboard(dataframe):
88
+ if dataframe is None or dataframe.empty:
89
+ raise ValueError("Leaderboard DataFrame is empty or None.")
90
+
91
+ return Leaderboard(
92
+ value=dataframe,
93
+ datatype=[
94
+ col["type"]
95
+ for col in AutoEvalColumn.__dict__.values()
96
+ if isinstance(col, dict)
97
+ ],
98
+ select_columns=SelectColumns(
99
+ default_selection=[
100
+ col["name"]
101
+ for col in AutoEvalColumn.__dict__.values()
102
+ if isinstance(col, dict) and col["displayed_by_default"]
103
+ ],
104
+ cant_deselect=[
105
+ col["name"]
106
+ for col in AutoEvalColumn.__dict__.values()
107
+ if isinstance(col, dict) and col.get("never_hidden", False)
108
+ ],
109
+ label="Select Columns to Display:",
110
+ ),
111
+ search_columns=["Model"],
112
+ interactive=False,
113
+ )
114
+
115
+
116
+ def format_model_link(row):
117
+ """Format model name as HTML link if URL is available"""
118
+ model_name = row["Model"]
119
+ # url = row.get("URL", "")
120
+ # if pd.notna(url) and url.strip():
121
+ # return f'<a href="{url}" target="_blank">{model_name}</a>'
122
+ return model_name
123
+
124
+
125
+ demo = gr.Blocks()
126
  with demo:
127
+ gr.HTML(TITLE)
128
+ gr.Markdown(INTRODUCTION_TEXT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
+ with gr.Tabs() as tabs:
131
+ with gr.TabItem("🏅 Leaderboard"):
132
+ df = get_result_data()
133
+ df["Model"] = df.apply(format_model_link, axis=1)
134
+ leaderboard = init_leaderboard(df)
 
 
 
 
135
 
136
+ demo.launch()