OptiTec-L2 / app.py
C2MV's picture
Update app.py
c281624 verified
raw
history blame
21.6 kB
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
import plotly.graph_objects as go
from scipy.optimize import minimize
import plotly.express as px
from scipy.stats import t, f
import gradio as gr
import io
import zipfile
import tempfile
from datetime import datetime
import docx
from docx.shared import Inches, Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from matplotlib.colors import to_hex
import os
# --- Data definition in global scope ---
data_dict = {
'Tratamiento': ['T1', 'T2', 'T3', 'T4', 'T5', 'T6', 'T7', 'T8', 'T9', 'T10', 'T11', 'T12', 'T13', 'T14', 'T15'] * 3,
'Tiempo_fermentacion_h': [16] * 15 + [23] * 15 + [40] * 15,
'pH': [6.02, 5.39, 6.27, 4.82, 6.25, 4.87, 4.76, 4.68, 4.64, 6.35, 4.67, 6.43, 4.58, 4.60, 6.96,
5.17, 5.95, 6.90, 5.50, 5.08, 4.95, 5.41, 5.52, 4.98, 7.10, 5.36, 6.91, 5.21, 4.66, 7.10,
5.42, 5.60, 7.36, 5.36, 4.66, 4.93, 5.18, 5.26, 4.92, 7.28, 5.26, 6.84, 5.19, 4.58, 7.07],
'Abs_600nm': [1.576, 1.474, 1.293, 1.446, 1.537, 1.415, 1.481, 1.419, 1.321, 1.224, 1.459, 0.345, 1.279, 1.181, 0.662,
1.760, 1.690, 1.485, 1.658, 1.728, 1.594, 1.673, 1.607, 1.531, 1.424, 1.595, 0.344, 1.477, 1.257, 0.660,
1.932, 1.780, 1.689, 1.876, 1.885, 1.824, 1.913, 1.810, 1.852, 1.694, 1.831, 0.347, 1.752, 1.367, 0.656],
'Glucosa_g_L': [5,10,0,5,10,5,10,5,10,0,5,0,5,5,0] * 3,
'Proteina_Pescado_g_L': [1.4,1.4,3.2,3.2,3.2,3.2,3.2,5,5,5,5,0,5,5,0] * 3,
'Sulfato_Manganeso_g_L': [0.75,0.5,0.75,0.5,0.75,0.5,0.75,0.5,0.25,0.75,0.5,0.25,0.5,0.25,0.5] * 3
}
data = pd.DataFrame(data_dict)
# --- End of data definition in global scope ---
# --- Clase RSM_BoxBehnken ---
class RSM_BoxBehnken:
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
"""
Inicializa la clase con los datos del diseño Box-Behnken.
"""
self.data = data.copy()
self.model = None
self.model_simplified = None
self.model_personalized = None # For personalized model
self.optimized_results = None
self.optimal_levels = None
self.all_figures_full = [] # Separate lists for different model plots
self.all_figures_simplified = []
self.all_figures_personalized = []
self.x1_name = x1_name
self.x2_name = x2_name
self.x3_name = x3_name
self.y_name = y_name
# Niveles originales de las variables
self.x1_levels = x1_levels
self.x2_levels = x2_levels
self.x3_levels = x3_levels
# ... (previous methods like get_levels, get_units, coded_to_natural, natural_to_coded, pareto_chart, get_simplified_equation, generate_prediction_table, calculate_contribution_percentage, calculate_detailed_anova, get_all_tables, save_figures_to_zip, save_fig_to_bytes, save_all_figures_png, save_tables_to_excel, export_tables_to_word remain mostly the same)
def fit_personalized_model(self, formula):
"""
Ajusta un modelo personalizado de segundo orden a los datos, usando la formula dada.
"""
self.model_personalized = smf.ols(formula, data=self.data).fit()
print("\nModelo Personalizado:")
print(self.model_personalized.summary())
return self.model_personalized, self.pareto_chart(self.model_personalized, "Pareto - Modelo Personalizado")
def generate_all_plots(self):
"""
Genera todas las gráficas de RSM para todos los modelos.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return
self.all_figures_full = [] # Reset lists for each model type
self.all_figures_simplified = []
self.all_figures_personalized = []
levels_to_plot_natural = { # Levels from data, as before
self.x1_name: sorted(list(set(self.data[self.x1_name]))),
self.x2_name: sorted(list(set(self.data[self.x2_name]))),
self.x3_name: sorted(list(set(self.data[self.x3_name])))
}
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
for level in levels_to_plot_natural[fixed_variable]:
fig_full = self.plot_rsm_individual(fixed_variable, level, model_type='full') # Pass model_type
if fig_full:
self.all_figures_full.append(fig_full)
fig_simplified = self.plot_rsm_individual(fixed_variable, level, model_type='simplified') # Pass model_type
if fig_simplified:
self.all_figures_simplified.append(fig_simplified)
if self.model_personalized is not None: # Generate personalized plots only if model exists
fig_personalized = self.plot_rsm_individual(fixed_variable, level, model_type='personalized') # Pass model_type
if fig_personalized:
self.all_figures_personalized.append(fig_personalized)
def plot_rsm_individual(self, fixed_variable, fixed_level, model_type='simplified'): # Added model_type parameter
"""
Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica y modelo.
"""
model_to_use = self.model_simplified # Default to simplified model
model_title_suffix = "(Modelo Simplificado)"
if model_type == 'full':
model_to_use = self.model
model_title_suffix = "(Modelo Completo)"
elif model_type == 'personalized':
if self.model_personalized is None:
print("Error: Modelo personalizado no ajustado.")
return None
model_to_use = self.model_personalized
model_title_suffix = "(Modelo Personalizado)"
if model_to_use is None: # Use model_to_use instead of self.model_simplified
print(f"Error: Ajusta el modelo {model_type} primero.") # More informative error message
return None
# ... (rest of the plot_rsm_individual method remains similar, but use model_to_use and model_title_suffix)
# ... (Make sure to update title to include model_title_suffix)
fig.update_layout(
scene=dict(
xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
zaxis_title=self.y_name,
),
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) {model_title_suffix}</sup>", # Updated title
height=800,
width=1000,
showlegend=True
)
return fig
# --- Funciones para la Interfaz de Gradio ---
def load_data(data_str):
# ... (load_data function remains the same)
return data.round(3), gr.update(visible=True)
def fit_and_optimize_model():
if 'rsm' not in globals():
return [None]*11
model_completo, pareto_completo = rsm.fit_model()
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
# Personalized model fitting is now triggered separately by custom_model_button
optimization_table = rsm.optimize()
equation = rsm.get_simplified_equation()
prediction_table = rsm.generate_prediction_table()
contribution_table = rsm.calculate_contribution_percentage()
anova_table = rsm.calculate_detailed_anova()
rsm.generate_all_plots() # Generate all plots for all models after fitting
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
excel_path = rsm.save_tables_to_excel()
zip_path = rsm.save_figures_to_zip()
return (
model_completo.summary().as_html(),
pareto_completo,
model_simplificado.summary().as_html(),
pareto_simplificado,
equation_formatted,
optimization_table,
prediction_table,
contribution_table,
anova_table,
zip_path,
excel_path
)
def fit_custom_model(factor_checkboxes, interaction_checkboxes): # New function for custom model
if 'rsm' not in globals():
return [None]*3 # Adjust output number
formula_parts = [rsm.x1_name, rsm.x2_name, rsm.x3_name] if "factors" in factor_checkboxes else []
if "x1_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x1_name}**2)')
if "x2_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x2_name}**2)')
if "x3_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x3_name}**2)')
if "x1x2" in interaction_checkboxes: formula_parts.append(f'{rsm.x1_name}:{rsm.x2_name}')
if "x1x3" in interaction_checkboxes: formula_parts.append(f'{rsm.x1_name}:{rsm.x3_name}')
if "x2x3" in interaction_checkboxes: formula_parts.append(f'{rsm.x2_name}:{rsm.x3_name}')
if not formula_parts:
formula = f'{rsm.y_name} ~ 1' # Intercept-only model if nothing selected
else:
formula = f'{rsm.y_name} ~ ' + ' + '.join(formula_parts)
custom_model, pareto_custom = rsm.fit_personalized_model(formula) # Fit personalized model
rsm.generate_all_plots() # Regenerate plots to include personalized model plots
return custom_model.summary().as_html(), pareto_custom, rsm.all_figures_personalized # Return custom model summary, pareto, and personalized plots
def show_plot(current_index, all_figures, model_type): # Modified to accept model_type
figure_list = []
if model_type == 'full':
figure_list = rsm.all_figures_full
elif model_type == 'simplified':
figure_list = rsm.all_figures_simplified
elif model_type == 'personalized':
figure_list = rsm.all_figures_personalized
if not figure_list:
return None, f"No hay gráficos disponibles para el modelo {model_type}.", current_index
selected_fig = figure_list[current_index]
plot_info_text = f"Gráfico {current_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})" # Updated plot info
return selected_fig, plot_info_text, current_index
def navigate_plot(direction, current_index, all_figures, model_type): # Modified to accept model_type
figure_list = []
if model_type == 'full':
figure_list = rsm.all_figures_full
elif model_type == 'simplified':
figure_list = rsm.all_figures_simplified
elif model_type == 'personalized':
figure_list = rsm.all_figures_personalized
if not figure_list:
return None, f"No hay gráficos disponibles para el modelo {model_type}.", current_index
if direction == 'left':
new_index = (current_index - 1) % len(figure_list)
elif direction == 'right':
new_index = (current_index + 1) % len(figure_list)
else:
new_index = current_index
selected_fig = figure_list[new_index]
plot_info_text = f"Gráfico {new_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})" # Updated plot info
return selected_fig, plot_info_text, new_index
def download_current_plot(all_figures, current_index, model_type): # Modified to accept model_type
figure_list = []
if model_type == 'full':
figure_list = rsm.all_figures_full
elif model_type == 'simplified':
figure_list = rsm.all_figures_simplified
elif model_type == 'personalized':
figure_list = rsm.all_figures_personalized
if not figure_list:
return None
fig = figure_list[current_index]
img_bytes = rsm.save_fig_to_bytes(fig)
filename = f"Grafico_RSM_{model_type}_{current_index + 1}.png" # Added model type to filename
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
temp_file.write(img_bytes)
temp_path = temp_file.name
return temp_path
def download_all_plots_zip(model_type): # Modified to accept model_type
if 'rsm' not in globals():
return None
if model_type == 'full':
rsm.all_figures = rsm.all_figures_full # Set current figures to download
elif model_type == 'simplified':
rsm.all_figures = rsm.all_figures_simplified
elif model_type == 'personalized':
rsm.all_figures = rsm.all_figures_personalized
zip_path = rsm.save_figures_to_zip()
if zip_path:
filename = f"Graficos_RSM_{model_type}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip" # Added model type to filename
return zip_path
return None
# --- Crear la interfaz de Gradio ---
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# Optimización de la Absorbancia usando RSM")
with gr.Row():
with gr.Column():
gr.Markdown("## Configuración del Análisis")
data_input = gr.Textbox(label="Datos del Experimento (formato CSV - Ignored, Data is Hardcoded)", lines=5, interactive=False, value="Data is pre-loaded, ignore input.")
load_button = gr.Button("Cargar Datos")
data_dropdown = gr.Dropdown(["All Data"], value="All Data", label="Seleccionar Datos") # Data Selection Dropdown - currently only 'All Data'
with gr.Column():
gr.Markdown("## Datos Cargados")
data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)
with gr.Row(visible=False) as analysis_row:
with gr.Column():
fit_button = gr.Button("Ajustar Modelo Simplificado y Completo") # Button label changed
gr.Markdown("**Modelo Completo**")
model_completo_output = gr.HTML()
pareto_completo_output = gr.Plot()
gr.Markdown("**Modelo Simplificado**")
model_simplificado_output = gr.HTML()
pareto_simplificado_output = gr.Plot()
gr.Markdown("## Modelo Personalizado") # Personalized Model Section
factor_checkboxes = gr.CheckboxGroup(["factors", "x1_sq", "x2_sq", "x3_sq"], label="Términos de Factores", value=["factors", "x1_sq", "x2_sq", "x3_sq"]) # Factor Checkboxes
interaction_checkboxes = gr.CheckboxGroup(["x1x2", "x1x3", "x2x3"], label="Términos de Interacción") # Interaction Checkboxes
custom_model_button = gr.Button("Ajustar Modelo Personalizado") # Fit Custom Model Button
model_personalized_output = gr.HTML() # Output for personalized model summary
pareto_personalized_output = gr.Plot() # Pareto for personalized model
gr.Markdown("**Ecuación del Modelo Simplificado**")
equation_output = gr.HTML()
optimization_table_output = gr.Dataframe(label="Tabla de Optimización", interactive=False)
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución", interactive=False)
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
gr.Markdown("## Descargar Todas las Tablas")
download_excel_button = gr.DownloadButton("Descargar Tablas en Excel")
download_word_button = gr.DownloadButton("Descargar Tablas en Word")
with gr.Column():
gr.Markdown("## Gráficos de Superficie de Respuesta")
model_type_radio = gr.Radio(["simplified", "full", "personalized"], value="simplified", label="Tipo de Modelo para Gráficos") # Model Type Radio
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa_g_L", "Proteina_Pescado_g_L", "Sulfato_Manganeso_g_L"], value="Glucosa_g_L")
fixed_level_input = gr.Slider(label="Nivel de Variable Fija (Natural Units)", minimum=min(data['Glucosa_g_L']), maximum=max(data['Glucosa_g_L']), step=0.1, value=5.0)
plot_button = gr.Button("Generar Gráficos")
with gr.Row():
left_button = gr.Button("<")
right_button = gr.Button(">")
rsm_plot_output = gr.Plot()
plot_info = gr.Textbox(label="Información del Gráfico", value="Gráfico 1 de 9", interactive=False)
with gr.Row():
download_plot_button = gr.DownloadButton("Descargar Gráfico Actual (PNG)")
download_all_plots_button = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
current_index_state = gr.State(0)
all_figures_state = gr.State([])
current_model_type_state = gr.State('simplified') # State to track selected model type for plots
# Cargar datos
load_button.click(
load_data,
inputs=[data_input],
outputs=[data_output, analysis_row]
)
# Ajustar modelo y optimizar (Simplified and Full)
fit_button.click(
fit_and_optimize_model,
inputs=[],
outputs=[
model_completo_output,
pareto_completo_output,
model_simplificado_output,
pareto_simplificado_output,
equation_output,
optimization_table_output,
prediction_table_output,
contribution_table_output,
anova_table_output,
download_all_plots_button,
download_excel_button
]
)
# Ajustar modelo personalizado
custom_model_button.click( # New event for custom model fitting
fit_custom_model,
inputs=[factor_checkboxes, interaction_checkboxes],
outputs=[model_personalized_output, pareto_personalized_output, all_figures_state] # Output personalized plots to state
)
# Generar y mostrar los gráficos
plot_button.click(
lambda fixed_var, fixed_lvl, model_type: ( # Added model_type input
show_plot(0, [], model_type) if not hasattr(rsm, 'all_figures_full') or not rsm.all_figures_full else show_plot(0, rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized if model_type == 'personalized' else [], model_type) , # Conditional plot selection
0,
model_type # Update model_type state
),
inputs=[fixed_variable_input, fixed_level_input, model_type_radio], # Added model_type_radio input
outputs=[rsm_plot_output, plot_info, current_index_state, current_model_type_state] # Output model_type to state
)
# Navegación de gráficos
left_button.click(
lambda current_index, all_figures, model_type: navigate_plot('left', current_index, all_figures, model_type), # Pass model_type
inputs=[current_index_state, all_figures_state, current_model_type_state], # Input model_type state
outputs=[rsm_plot_output, plot_info, current_index_state]
)
right_button.click(
lambda current_index, all_figures, model_type: navigate_plot('right', current_index, all_figures, model_type), # Pass model_type
inputs=[current_index_state, all_figures_state, current_model_type_state], # Input model_type state
outputs=[rsm_plot_output, plot_info, current_index_state]
)
# Descargar gráfico actual
download_plot_button.click(
download_current_plot,
inputs=[all_figures_state, current_index_state, current_model_type_state], # Pass model_type state
outputs=download_plot_button
)
# Descargar todos los gráficos en ZIP
download_all_plots_button.click(
lambda model_type: download_all_plots_zip(model_type), # Pass model_type
inputs=[current_model_type_state], # Input model_type state
outputs=download_all_plots_button
)
# Descargar todas las tablas en Excel y Word
download_excel_button.click(
fn=lambda: download_all_tables_excel(),
inputs=[],
outputs=download_excel_button
)
download_word_button.click(
fn=lambda: exportar_word(rsm, rsm.get_all_tables()),
inputs=[],
outputs=download_word_button
)
# Ejemplo de uso
gr.Markdown("## Instrucciones:")
gr.Markdown("""
1. Click 'Cargar Datos' para usar los datos precargados.
2. Click 'Ajustar Modelo Simplificado y Completo'.
3. Opcional: Define un Modelo Personalizado seleccionando términos y haz clic en 'Ajustar Modelo Personalizado'.
4. Selecciona el 'Tipo de Modelo para Gráficos' (Simplificado, Completo o Personalizado).
5. Select 'Variable Fija' and 'Nivel de Variable Fija'.
6. Click 'Generar Gráficos'.
7. Navega entre los gráficos usando los botones '<' y '>'.
8. Descarga el gráfico actual en PNG o descarga todos los gráficos en un ZIP.
9. Descarga todas las tablas en un archivo Excel o Word con los botones correspondientes.
""")
return demo
# --- Función Principal ---
def main():
interface = create_gradio_interface()
interface.launch(share=True)
if __name__ == "__main__":
main()