File size: 25,412 Bytes
e0fbfa8
71817ec
 
 
 
 
 
f340ee7
71817ec
519b16c
da8be82
47688e3
65cf050
32ffd0d
 
 
 
71817ec
5c5ea4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ffd0d
71817ec
550ed22
65cf050
 
 
854197f
 
 
c281624
854197f
 
c281624
 
 
550ed22
 
 
 
854197f
23ece77
550ed22
 
 
406b47b
58ad40d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c281624
 
4b95828
c281624
4b95828
c281624
 
 
 
 
 
4b95828
c281624
4b95828
854197f
23ece77
 
854197f
c281624
 
 
 
 
 
 
 
 
 
 
 
 
58ad40d
c281624
 
58ad40d
c281624
 
 
58ad40d
c281624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23ece77
854197f
58ad40d
 
 
 
 
 
 
 
 
 
 
 
 
 
c121bf6
58ad40d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23ece77
 
47688e3
 
23ece77
 
c281624
23ece77
 
 
 
 
 
32ffd0d
 
550ed22
c121bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
550ed22
32ffd0d
c121bf6
 
32ffd0d
c281624
10fce6d
32ffd0d
 
c281624
 
 
 
10fce6d
32ffd0d
 
 
10fce6d
32ffd0d
 
c281624
32ffd0d
c121bf6
 
32ffd0d
c121bf6
 
c281624
 
c121bf6
 
c281624
c121bf6
 
c281624
32ffd0d
c121bf6
 
 
 
 
c281624
32ffd0d
c121bf6
32ffd0d
10fce6d
32ffd0d
c281624
 
 
 
32ffd0d
 
 
 
c121bf6
 
32ffd0d
c121bf6
 
 
 
 
10fce6d
58ad40d
c281624
32ffd0d
 
c281624
 
32ffd0d
10fce6d
c281624
32ffd0d
 
 
c281624
 
 
 
 
 
 
 
 
 
 
 
32ffd0d
 
10fce6d
c281624
 
 
c121bf6
 
c281624
 
58ad40d
32ffd0d
 
58ad40d
 
 
32ffd0d
10fce6d
c281624
32ffd0d
 
58ad40d
 
32ffd0d
 
 
58ad40d
 
32ffd0d
 
10fce6d
32ffd0d
 
 
58ad40d
32ffd0d
 
10fce6d
32ffd0d
 
58ad40d
 
32ffd0d
 
10fce6d
32ffd0d
 
 
 
 
 
10fce6d
32ffd0d
 
 
 
 
10fce6d
58ad40d
32ffd0d
c281624
32ffd0d
10fce6d
c281624
 
 
 
 
 
 
 
32ffd0d
 
 
 
 
 
 
 
 
 
 
10fce6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
import plotly.graph_objects as go
from scipy.optimize import minimize
import plotly.express as px
from scipy.stats import t, f
import gradio as gr
import io
import zipfile
import tempfile
from datetime import datetime
import docx
from docx.shared import Inches, Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
import os

# --- Data definition in global scope ---
data_dict = {
    'Tratamiento': ['T1', 'T2', 'T3', 'T4', 'T5', 'T6', 'T7', 'T8', 'T9', 'T10', 'T11', 'T12', 'T13', 'T14', 'T15'] * 3,
    'Tiempo_fermentacion_h': [16] * 15 + [23] * 15 + [40] * 15,
    'pH': [6.02, 5.39, 6.27, 4.82, 6.25, 4.87, 4.76, 4.68, 4.64, 6.35, 4.67, 6.43, 4.58, 4.60, 6.96,
           5.17, 5.95, 6.90, 5.50, 5.08, 4.95, 5.41, 5.52, 4.98, 7.10, 5.36, 6.91, 5.21, 4.66, 7.10,
           5.42, 5.60, 7.36, 5.36, 4.66, 4.93, 5.18, 5.26, 4.92, 7.28, 5.26, 6.84, 5.19, 4.58, 7.07],
    'Abs_600nm': [1.576, 1.474, 1.293, 1.446, 1.537, 1.415, 1.481, 1.419, 1.321, 1.224, 1.459, 0.345, 1.279, 1.181, 0.662,
                  1.760, 1.690, 1.485, 1.658, 1.728, 1.594, 1.673, 1.607, 1.531, 1.424, 1.595, 0.344, 1.477, 1.257, 0.660,
                  1.932, 1.780, 1.689, 1.876, 1.885, 1.824, 1.913, 1.810, 1.852, 1.694, 1.831, 0.347, 1.752, 1.367, 0.656],
    'Glucosa_g_L': [5,10,0,5,10,5,10,5,10,0,5,0,5,5,0] * 3,
    'Proteina_Pescado_g_L': [1.4,1.4,3.2,3.2,3.2,3.2,3.2,5,5,5,5,0,5,5,0] * 3,
    'Sulfato_Manganeso_g_L': [0.75,0.5,0.75,0.5,0.75,0.5,0.75,0.5,0.25,0.75,0.5,0.25,0.5,0.25,0.5] * 3
}
data = pd.DataFrame(data_dict)
# --- End of data definition in global scope ---


# --- Clase RSM_BoxBehnken ---
class RSM_BoxBehnken:
    def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
        """
        Inicializa la clase con los datos del diseño Box-Behnken.
        """
        self.data = data.copy()
        self.model = None
        self.model_simplified = None
        self.model_personalized = None # For personalized model
        self.optimized_results = None
        self.optimal_levels = None
        self.all_figures_full = [] # Separate lists for different model plots
        self.all_figures_simplified = []
        self.all_figures_personalized = []
        self.x1_name = x1_name
        self.x2_name = x2_name
        self.x3_name = x3_name
        self.y_name = y_name

        # Niveles originales de las variables
        self.x1_levels = x1_levels
        self.x2_levels = x2_levels
        self.x3_levels = x3_levels

    def get_levels(self, variable_name):
        """
        Obtiene los niveles para una variable específica.
        """
        if variable_name == self.x1_name:
            return self.x1_levels
        elif variable_name == self.x2_name:
            return self.x2_levels
        elif variable_name == self.x3_name:
            return self.x3_levels
        else:
            raise ValueError(f"Variable desconocida: {variable_name}")

    def fit_model(self):
        """
        Ajusta el modelo de segundo orden completo a los datos.
        """
        formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
                  f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
                  f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
        self.model = smf.ols(formula, data=self.data).fit()
        print("Modelo Completo:")
        print(self.model.summary())
        return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")

    def fit_simplified_model(self):
        """
        Ajusta el modelo de segundo orden a los datos, eliminando términos no significativos.
        """
        formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
                  f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)' # Adjusted formula to include x3^2
        self.model_simplified = smf.ols(formula, data=self.data).fit()
        print("\nModelo Simplificado:")
        print(self.model_simplified.summary())
        return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")

    def optimize(self, method='Nelder-Mead'):
        """
        Encuentra los niveles óptimos de los factores para maximizar la respuesta usando el modelo simplificado.
        """
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return

        def objective_function(x):
            return -self.model_simplified.predict(pd.DataFrame({
                self.x1_name: [x[0]],
                self.x2_name: [x[1]],
                self.x3_name: [x[2]]
            })).values[0]

        bounds = [(-1, 1), (-1, 1), (-1, 1)]
        x0 = [0, 0, 0]

        self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
        self.optimal_levels = self.optimized_results.x

        # Convertir niveles óptimos de codificados a naturales
        optimal_levels_natural = [
            self.coded_to_natural(self.optimal_levels[0], self.x1_name),
            self.coded_to_natural(self.optimal_levels[1], self.x2_name),
            self.coded_to_natural(self.optimal_levels[2], self.x3_name)
        ]
        # Crear la tabla de optimización
        optimization_table = pd.DataFrame({
            'Variable': [self.x1_name, self.x2_name, self.x3_name],
            'Nivel Óptimo (Natural)': optimal_levels_natural,
            'Nivel Óptimo (Codificado)': self.optimal_levels
        })

        return optimization_table.round(3)  # Redondear a 3 decimales

    def fit_personalized_model(self, formula):
        """
        Ajusta un modelo personalizado de segundo orden a los datos, usando la formula dada.
        """
        self.model_personalized = smf.ols(formula, data=self.data).fit()
        print("\nModelo Personalizado:")
        print(self.model_personalized.summary())
        return self.model_personalized, self.pareto_chart(self.model_personalized, "Pareto - Modelo Personalizado")

    def generate_all_plots(self):
        """
        Genera todas las gráficas de RSM para todos los modelos.
        """
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return

        self.all_figures_full = [] # Reset lists for each model type
        self.all_figures_simplified = []
        self.all_figures_personalized = []

        levels_to_plot_natural = { # Levels from data, as before
            self.x1_name: sorted(list(set(self.data[self.x1_name]))),
            self.x2_name: sorted(list(set(self.data[self.x2_name]))),
            self.x3_name: sorted(list(set(self.data[self.x3_name])))
        }

        for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
            for level in levels_to_plot_natural[fixed_variable]:
                fig_full = self.plot_rsm_individual(fixed_variable, level, model_type='full') # Pass model_type
                if fig_full is not None:
                    self.all_figures_full.append(fig_full)
                fig_simplified = self.plot_rsm_individual(fixed_variable, level, model_type='simplified') # Pass model_type
                if fig_simplified is not None:
                    self.all_figures_simplified.append(fig_simplified)
                if self.model_personalized is not None: # Generate personalized plots only if model exists
                    fig_personalized = self.plot_rsm_individual(fixed_variable, level, model_type='personalized') # Pass model_type
                    if fig_personalized is not None:
                        self.all_figures_personalized.append(fig_personalized)

    def plot_rsm_individual(self, fixed_variable, fixed_level, model_type='simplified'): # Added model_type parameter
        """
        Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica y modelo.
        """
        model_to_use = self.model_simplified # Default to simplified model
        model_title_suffix = "(Modelo Simplificado)"
        if model_type == 'full':
            model_to_use = self.model
            model_title_suffix = "(Modelo Completo)"
        elif model_type == 'personalized':
            if self.model_personalized is None:
                print("Error: Modelo personalizado no ajustado.")
                return None
            model_to_use = self.model_personalized
            model_title_suffix = "(Modelo Personalizado)"

        if model_to_use is None: # Use model_to_use instead of self.model_simplified
            print(f"Error: Ajusta el modelo {model_type} primero.") # More informative error message
            return None

        # Determinar las variables que varían y sus niveles naturales
        varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]

        # Establecer los niveles naturales para las variables que varían
        x_natural_levels = self.get_levels(varying_variables[0])
        y_natural_levels = self.get_levels(varying_variables[1])

        # Crear una malla de puntos para las variables que varían (en unidades naturales)
        x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
        y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
        x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)

        # Convertir la malla de variables naturales a codificadas
        x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
        y_grid_coded = self.natural_to_coded(y_range_natural, varying_variables[1])

        # Crear un DataFrame para la predicción con variables codificadas
        prediction_data = pd.DataFrame({
            varying_variables[0]: x_grid_coded.flatten(),
            varying_variables[1]: y_grid_coded.flatten(),
        })
        prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)

        # Fijar la variable fija en el DataFrame de predicción
        fixed_var_levels = self.get_levels(fixed_variable)
        if len(fixed_var_levels) == 3:  # Box-Behnken design levels
            prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
        elif len(fixed_var_levels) > 0: # Use the closest level if not Box-Behnken
            closest_level_coded = self.natural_to_coded(min(fixed_var_levels, key=lambda x:abs(x-fixed_level)), fixed_variable)
            prediction_data[fixed_variable] = closest_level_coded


        # Calcular los valores predichos
        z_pred = model_to_use.predict(prediction_data).values.reshape(x_grid_coded.shape) # Use model_to_use here

        # Filtrar por el nivel de la variable fija (en codificado)
        fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
        subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]

        # Filtrar por niveles válidos en las variables que varían
        valid_levels = [-1, 0, 1]
        experiments_data = subset_data[
            subset_data[varying_variables[0]].isin(valid_levels) &
            subset_data[varying_variables[1]].isin(valid_levels)
        ]

        # Convertir coordenadas de experimentos a naturales
        experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
        experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))

        # Crear el gráfico de superficie con variables naturales en los ejes y transparencia
        fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])

        # --- Añadir cuadrícula a la superficie ---
        # Líneas en la dirección x
        for i in range(x_grid_natural.shape[0]):
            fig.add_trace(go.Scatter3d(
                x=x_grid_natural[i, :],
                y=y_grid_natural[i, :],
                z=z_pred[i, :],
                mode='lines',
                line=dict(color='gray', width=2),
                showlegend=False,
                hoverinfo='skip'
            ))
        # Líneas en la dirección y
        for j in range(x_grid_natural.shape[1]):
            fig.add_trace(go.Scatter3d(
                x=x_grid_natural[:, j],
                y=y_grid_natural[:, j],
                z=z_pred[:, j],
                mode='lines',
                line=dict(color='gray', width=2),
                showlegend=False,
                hoverinfo='skip'
            ))

        # --- Fin de la adición de la cuadrícula ---

        # Añadir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
        colors = px.colors.qualitative.Safe
        point_labels = [f"{row[self.y_name]:.3f}" for _, row in experiments_data.iterrows()]

        fig.add_trace(go.Scatter3d(
            x=experiments_x_natural,
            y=experiments_y_natural,
            z=experiments_data[self.y_name].round(3),
            mode='markers+text',
            marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
            text=point_labels,
            textposition='top center',
            name='Experimentos'
        ))

        # Añadir etiquetas y título con variables naturales
        fig.update_layout(
            scene=dict(
                xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
                yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
                zaxis_title=self.y_name,
            ),
            title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) {model_title_suffix}</sup>", # Updated title
            height=800,
            width=1000,
            showlegend=True
        )
        return fig


# --- Funciones para la Interfaz de Gradio ---

model_completo_output = gr.HTML()
pareto_completo_output = gr.Plot()
model_simplificado_output = gr.HTML()
pareto_simplificado_output = gr.Plot()
equation_output = gr.HTML()
optimization_table_output = gr.Dataframe(label="Tabla de Optimización", interactive=False)
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución", interactive=False)
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
download_all_plots_button = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
download_excel_button = gr.DownloadButton("Descargar Tablas en Excel")
rsm_plot_output = gr.Plot()
plot_info = gr.Textbox(label="Información del Gráfico", value="Gráfico 1 de 9", interactive=False)
current_index_state = gr.State(0)
all_figures_state = gr.State([])
current_model_type_state = gr.State('simplified')
model_personalized_output = gr.HTML() # Output for personalized model summary
pareto_personalized_output = gr.Plot() # Pareto for personalized model
factor_checkboxes = gr.CheckboxGroup(["factors", "x1_sq", "x2_sq", "x3_sq"], label="Términos de Factores", value=["factors", "x1_sq", "x2_sq", "x3_sq"]) # Factor Checkboxes
interaction_checkboxes = gr.CheckboxGroup(["x1x2", "x1x3", "x2x3"], label="Términos de Interacción") # Interaction Checkboxes


def create_gradio_interface():
    global model_completo_output, pareto_completo_output, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output, download_all_plots_button, download_excel_button, rsm_plot_output, plot_info, current_index_state, all_figures_state, current_model_type_state, model_personalized_output, pareto_personalized_output, factor_checkboxes, interaction_checkboxes

    with gr.Blocks() as demo:
        gr.Markdown("# Optimización de la Absorbancia usando RSM")

        with gr.Row():
            with gr.Column():
                gr.Markdown("## Configuración del Análisis")
                data_input = gr.Textbox(label="Datos del Experimento (formato CSV - Ignored, Data is Hardcoded)", lines=5, interactive=False, value="Data is pre-loaded, ignore input.")
                load_button = gr.Button("Cargar Datos")
                data_dropdown = gr.Dropdown(["All Data"], value="All Data", label="Seleccionar Datos") # Data Selection Dropdown - currently only 'All Data'

            with gr.Column():
                gr.Markdown("## Datos Cargados")
                data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)

        with gr.Row(visible=False) as analysis_row:
            with gr.Column():
                fit_button = gr.Button("Ajustar Modelo Simplificado y Completo") # Button label changed
                gr.Markdown("**Modelo Completo**")
                model_completo_output = model_completo_output # gr.HTML() # output_components are now global
                pareto_completo_output = pareto_completo_output # gr.Plot()
                gr.Markdown("**Modelo Simplificado**")
                model_simplificado_output = model_simplificado_output # gr.HTML()
                pareto_simplificado_output = pareto_simplificado_output # gr.Plot()

                gr.Markdown("## Modelo Personalizado") # Personalized Model Section
                factor_checkboxes_comp = factor_checkboxes # gr.CheckboxGroup(["factors", "x1_sq", "x2_sq", "x3_sq"], label="Términos de Factores", value=["factors", "x1_sq", "x2_sq", "x3_sq"]) # Factor Checkboxes
                interaction_checkboxes_comp = interaction_checkboxes # gr.CheckboxGroup(["x1x2", "x1x3", "x2x3"], label="Términos de Interacción") # Interaction Checkboxes
                custom_model_button = gr.Button("Ajustar Modelo Personalizado") # Fit Custom Model Button
                model_personalized_output_comp = model_personalized_output # gr.HTML() # Output for personalized model summary
                pareto_personalized_output_comp = pareto_personalized_output # gr.Plot() # Pareto for personalized model

                gr.Markdown("**Ecuación del Modelo Simplificado**")
                equation_output = equation_output # gr.HTML()
                optimization_table_output = optimization_table_output # gr.Dataframe(label="Tabla de Optimización", interactive=False)
                prediction_table_output = prediction_table_output # gr.Dataframe(label="Tabla de Predicciones", interactive=False)
                contribution_table_output = contribution_table_output # gr.Dataframe(label="Tabla de % de Contribución", interactive=False)
                anova_table_output = anova_table_output # gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)

                gr.Markdown("## Descargar Todas las Tablas")
                download_excel_button_comp = download_excel_button # gr.DownloadButton("Descargar Tablas en Excel")
                download_word_button = gr.DownloadButton("Descargar Tablas en Word")

            with gr.Column():
                gr.Markdown("## Gráficos de Superficie de Respuesta")
                model_type_radio = gr.Radio(["simplified", "full", "personalized"], value="simplified", label="Tipo de Modelo para Gráficos") # Model Type Radio
                fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa_g_L", "Proteina_Pescado_g_L", "Sulfato_Manganeso_g_L"], value="Glucosa_g_L")
                fixed_level_input = gr.Slider(label="Nivel de Variable Fija (Natural Units)", minimum=min(data['Glucosa_g_L']), maximum=max(data['Glucosa_g_L']), step=0.1, value=5.0)
                plot_button = gr.Button("Generar Gráficos")
                with gr.Row():
                    left_button = gr.Button("<")
                    right_button = gr.Button(">")
                rsm_plot_output = rsm_plot_output # gr.Plot()
                plot_info = plot_info # gr.Textbox(label="Información del Gráfico", value="Gráfico 1 de 9", interactive=False)
                with gr.Row():
                    download_plot_button_comp = download_plot_button # gr.DownloadButton("Descargar Gráfico Actual (PNG)")
                    download_all_plots_button_comp = download_all_plots_button # gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
                current_index_state = current_index_state # gr.State(0)
                all_figures_state = all_figures_state # gr.State([])
                current_model_type_state = current_model_type_state # gr.State('simplified')


        # Cargar datos
        load_button.click(
            load_data,
            inputs=[data_input],
            outputs=[data_output, analysis_row]
        )

        # Ajustar modelo y optimizar (Simplified and Full)
        fit_button.click(
            fit_and_optimize_model,
            inputs=[],
            outputs=[
                model_completo_output,
                pareto_completo_output,
                model_simplificado_output,
                pareto_simplificado_output,
                equation_output,
                optimization_table_output,
                prediction_table_output,
                contribution_table_output,
                anova_table_output,
                download_all_plots_button,
                download_excel_button
            ]
        )

        # Ajustar modelo personalizado
        custom_model_button.click( # New event for custom model fitting
            fit_custom_model,
            inputs=[factor_checkboxes_comp, interaction_checkboxes_comp],
            outputs=[model_personalized_output_comp, pareto_personalized_output_comp] # pass output components
        )


        # Generar y mostrar los gráficos
        plot_button.click(
            lambda fixed_var, fixed_lvl, model_type: show_plot(0, [], model_type) if not hasattr(rsm, 'all_figures_full') or not rsm.all_figures_full else show_plot(0, [], model_type) if model_type == 'full' and not rsm.all_figures_full else show_plot(0, [], model_type) if model_type == 'simplified' and not rsm.all_figures_simplified else show_plot(0, [], model_type) if model_type == 'personalized' and not rsm.all_figures_personalized else show_plot(0, rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized, model_type),
            inputs=[fixed_variable_input, fixed_level_input, model_type_radio],
            outputs=[rsm_plot_output, plot_info, current_index_state, current_model_type_state]
        )


        # Navegación de gráficos
        left_button.click(
            lambda current_index, all_figures, model_type: navigate_plot('left', current_index, all_figures, model_type),
            inputs=[current_index_state, all_figures_state, current_model_type_state],
            outputs=[rsm_plot_output, plot_info, current_index_state]
        )
        right_button.click(
            lambda current_index, all_figures, model_type: navigate_plot('right', current_index, all_figures, model_type),
            inputs=[current_index_state, all_figures_state, current_model_type_state],
            outputs=[rsm_plot_output, plot_info, current_index_state]
        )

        # Descargar gráfico actual
        download_plot_button.click(
            download_current_plot,
            inputs=[all_figures_state, current_index_state, current_model_type_state],
            outputs=download_plot_button
        )

        # Descargar todos los gráficos en ZIP
        download_all_plots_button.click(
            lambda model_type: download_all_plots_zip(model_type),
            inputs=[current_model_type_state],
            outputs=download_all_plots_button
        )

        # Descargar todas las tablas en Excel y Word
        download_excel_button.click(
            fn=lambda: download_all_tables_excel(),
            inputs=[],
            outputs=download_excel_button
        )

        download_word_button.click(
            fn=lambda: exportar_word(rsm, rsm.get_all_tables()),
            inputs=[],
            outputs=download_word_button
        )


        # Ejemplo de uso
        gr.Markdown("## Instrucciones:")
        gr.Markdown("""
        1. Click 'Cargar Datos' para usar los datos precargados.
        2. Click 'Ajustar Modelo Simplificado y Completo'.
        3. Opcional: Define un Modelo Personalizado seleccionando términos y haz clic en 'Ajustar Modelo Personalizado'.
        4. Selecciona el 'Tipo de Modelo para Gráficos' (Simplificado, Completo o Personalizado).
        5. Select 'Variable Fija' and 'Nivel de Variable Fija'.
        6. Click 'Generar Gráficos'.
        7. Navega entre los gráficos usando los botones '<' y '>'.
        8. Descarga el gráfico actual en PNG o descarga todos los gráficos en un ZIP.
        9. Descarga todas las tablas en un archivo Excel o Word con los botones correspondientes.
        """)

    return demo

# --- Función Principal ---

def main():
    interface = create_gradio_interface()
    interface.launch(share=True)

if __name__ == "__main__":
    main()