Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 ByteDance and/or its affiliates. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from tts.modules.wavvae.decoder.seanet_encoder import Encoder | |
from tts.modules.wavvae.decoder.diag_gaussian import DiagonalGaussianDistribution | |
from tts.modules.wavvae.decoder.hifigan_modules import Generator, Upsample | |
class WavVAE_V3(nn.Module): | |
def __init__(self, hparams=None): | |
super().__init__() | |
self.encoder = Encoder(dowmsamples=[6, 5, 4, 4, 2]) | |
self.proj_to_z = nn.Linear(512, 64) | |
self.proj_to_decoder = nn.Linear(32, 320) | |
config_path = hparams['melgan_config'] | |
args = argparse.Namespace() | |
args.__dict__.update(config_path) | |
self.latent_upsampler = Upsample(320, 4) | |
self.decoder = Generator( | |
input_size_=160, ngf=128, n_residual_layers=4, | |
num_band=1, args=args, ratios=[5,4,4,3]) | |
''' encode waveform into 25 hz latent representation ''' | |
def encode_latent(self, audio): | |
posterior = self.encode(audio) | |
latent = posterior.sample().permute(0, 2, 1) # (b,t,latent_channel) | |
return latent | |
def encode(self, audio): | |
x = self.encoder(audio).permute(0, 2, 1) | |
x = self.proj_to_z(x).permute(0, 2, 1) | |
poseterior = DiagonalGaussianDistribution(x) | |
return poseterior | |
def decode(self, latent): | |
latent = self.proj_to_decoder(latent).permute(0, 2, 1) | |
return self.decoder(self.latent_upsampler(latent)) | |
def forward(self, audio): | |
posterior = self.encode(audio) | |
latent = posterior.sample().permute(0, 2, 1) # (b, t, latent_channel) | |
recon_wav = self.decode(latent) | |
return recon_wav, posterior |