# Copyright 2025 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from torch import nn import torch.nn.functional as F from tts.modules.wavvae.decoder.seanet_encoder import Encoder from tts.modules.wavvae.decoder.diag_gaussian import DiagonalGaussianDistribution from tts.modules.wavvae.decoder.hifigan_modules import Generator, Upsample class WavVAE_V3(nn.Module): def __init__(self, hparams=None): super().__init__() self.encoder = Encoder(dowmsamples=[6, 5, 4, 4, 2]) self.proj_to_z = nn.Linear(512, 64) self.proj_to_decoder = nn.Linear(32, 320) config_path = hparams['melgan_config'] args = argparse.Namespace() args.__dict__.update(config_path) self.latent_upsampler = Upsample(320, 4) self.decoder = Generator( input_size_=160, ngf=128, n_residual_layers=4, num_band=1, args=args, ratios=[5,4,4,3]) ''' encode waveform into 25 hz latent representation ''' def encode_latent(self, audio): posterior = self.encode(audio) latent = posterior.sample().permute(0, 2, 1) # (b,t,latent_channel) return latent def encode(self, audio): x = self.encoder(audio).permute(0, 2, 1) x = self.proj_to_z(x).permute(0, 2, 1) poseterior = DiagonalGaussianDistribution(x) return poseterior def decode(self, latent): latent = self.proj_to_decoder(latent).permute(0, 2, 1) return self.decoder(self.latent_upsampler(latent)) def forward(self, audio): posterior = self.encode(audio) latent = posterior.sample().permute(0, 2, 1) # (b, t, latent_channel) recon_wav = self.decode(latent) return recon_wav, posterior