Spaces:
Running
on
Zero
Running
on
Zero
# Data Processing | |
This is the data processing pipeline for 3D shape and texture generation. | |
**Notes**: | |
1. This implementation is a simplified version of our industrial pipeline. | |
2. The rendering script is based on [TRELLIS](https://github.com/microsoft/TRELLIS/blob/main/dataset_toolkits/blender_script/render.py). | |
## Rendering | |
### Motivation | |
The rendering script `render/render.py` serves three main purposes: | |
1. Converting complex 3D formats to PLY files using Blender for further processing. | |
2. Rendering condition images for DiT training. | |
3. Rendering orthogonal images, PBR materials, and conditional signals (world-space normals and positions) for texture generation. | |
### Requirements | |
The rendering scripts are executed with Blender 4.1. You need to install `opencv`, `OpenEXR`, and `Imath` using Blender's Python. Here is an example for a Macbook: | |
```bash | |
/Applications/Blender.app/Contents/Resources/4.1/python/bin/python3.11 -m pip install OpenEXR Imath opencv-python | |
``` | |
### Execution | |
The first two purposes can be executed with a single command: | |
```bash | |
$BLENDER_PATH -b -P render/render.py -- \ | |
--object ${INPUT_FILE} --geo_mode --resolution 512 \ | |
--output_folder $OUTPUT_FOLDER | |
``` | |
For the third purpose, simply remove the `--geo_mode` flag. | |
## Watertight Mesh Processing and Sampling | |
### Motivation | |
To learn an SDF representation for 3DShape2VecSets, we require a watertight input mesh. This pipeline processes raw triangle meshes to generate three essential data types: | |
1. **Surface samples** - Input points for the encoder. | |
2. **Volume samples** - Query points for SDF evaluation in the decoder. | |
3. **Volume SDFs** - Ground-truth signed distance values for VAE training. | |
### Execution | |
Process a triangle mesh (OBJ/OFF format) to generate: | |
1. Watertight mesh (`${OUTPUT_NAME}_watertight.obj`). | |
2. Surface point samples (`${OUTPUT_NAME}_surface.npz`). | |
3. Volume samples with SDFs (`${OUTPUT_NAME}_sdf.npz`). | |
**Command:** | |
```bash | |
python3 watertight/watertight_and_sample.py \ | |
--input_obj ${INPUT_MESH} \ | |
--output_prefix ${OUTPUT_NAME} | |
``` | |
### Output Data Format | |
#### 1. Surface Samples (`${OUTPUT_NAME}_surface.npz`) | |
Contains two point cloud arrays in numpy NPZ format: | |
| Key | Shape | Format | Description | | |
|-----------------|----------|----------|---------------------------------| | |
| `random_surface` | `(N, 6)` | `float16`| Uniform point samples on surface | | |
| `sharp_surface` | `(M, 6)` | `float16`| Samples near sharp mesh edges | | |
#### 2. Volume SDF Samples (`${OUTPUT_NAME}_sdf.npz`) | |
Contains three sample types stored as array pairs. For each type `${type}`: | |
| Sample Type | Points Array | SDF Labels Array | Shape | Format | Description | | |
|-----------------|----------------------|----------------------|----------|----------|-------------------------| | |
| `vol` | `vol_points` | `vol_label` | `(P, 3)/(P,)` | `float16`| Random spatial samples | | |
| `random_near` | `random_near_points` | `random_near_label` | `(Q, 3)/(Q,)` | `float16`| Samples near surface | | |
| `sharp_near` | `sharp_near_points` | `sharp_near_label` | `(R, 3)/(R,)` | `float16`| Samples near sharp edges | | |
**Data Specifications**: | |
- All point coordinates (`*_points` arrays) contain 3D positions stored as `float16` values. | |
- All SDF values (`*_label` arrays) are `float16` scalars representing: | |
- **Positive values**: Outside the surface. | |
- **Negative values**: Inside the surface. | |
- **Zero values**: On the surface. | |
- Array dimensions: | |
- `N`, `M`, `P`, `Q`, `R` represent sample counts (vary per shape). | |
- `3` indicates XYZ coordinates. | |
- `6` indicates XYZ/Normal coordinates. | |
- All arrays are stored uncompressed in numpy's NPZ format. | |
## Overall Script | |
Modify the first four variables in `pipeline.sh`: | |
1. **INPUT_FILE** The path to each 3D data file. | |
2. **OUTPUT_FOLDER** The overall path for the output dataset. | |
3. **NAME** The naming for the output path of each data. | |
4. **BLENDER_PATH** The executable path for Blender. | |
Then run the following script: | |
```bash | |
bash pipeline.sh | |
``` |