Intelligent-Medical-Guidance-Large-Model
/
server
/tts
/modules
/gpt_sovits
/inference_gpt_sovits.py
""" | |
TTS | |
https://github.com/RVC-Boss/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py | |
""" | |
import os | |
import re | |
import shutil | |
import time | |
from dataclasses import dataclass | |
from io import BytesIO | |
from pathlib import Path | |
import LangSegment | |
import librosa | |
import numpy as np | |
import soundfile as sf | |
import torch | |
from loguru import logger | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
from transformers.models.bert.modeling_bert import BertForMaskedLM | |
from transformers.models.bert.tokenization_bert_fast import BertTokenizerFast | |
from utils import HParams | |
from ....web_configs import WEB_CONFIGS | |
from .AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from .module import cnhubert | |
from .module.cnhubert import CNHubert | |
from .module.mel_processing import spectrogram_torch | |
from .module.models import SynthesizerTrn | |
from .text import cleaned_text_to_sequence | |
from .text.cleaner import clean_text | |
from .utils import load_audio | |
symbol_splits = { | |
",", | |
"。", | |
"?", | |
"!", | |
",", | |
".", | |
"?", | |
"!", | |
"~", | |
":", | |
":", | |
"—", | |
"…", | |
} | |
DEVICE = "cuda" | |
HZ = 50 | |
def get_bert_feature(text, bert_tokenizer, bert_model, word2ph): | |
with torch.no_grad(): | |
inputs = bert_tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(DEVICE) | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |
def change_sovits_weights(sovits_path, is_half): | |
dict_s2 = torch.load(sovits_path, map_location="cpu") | |
hps = dict_s2["config"] | |
hps.model.semantic_frame_rate = "25hz" | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
) | |
if "pretrained" not in sovits_path: | |
del vq_model.enc_q | |
if is_half: | |
vq_model = vq_model.half() | |
vq_model = vq_model.to(DEVICE) | |
vq_model.eval() | |
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
return vq_model, hps | |
def change_gpt_weights(gpt_path, is_half): | |
dict_s1 = torch.load(gpt_path, map_location="cpu") | |
config = dict_s1["config"] | |
max_sec = config["data"]["max_sec"] | |
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half: | |
t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(DEVICE) | |
t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
print("Number of parameter: %.2fM" % (total / 1e6)) | |
return max_sec, t2s_model | |
def get_spepc(hps, filename): | |
audio = load_audio(filename, int(hps.data.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
hps.data.filter_length, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
center=False, | |
) | |
return spec | |
def clean_text_inf(text, language): | |
phones, word2ph, norm_text = clean_text(text, language) | |
phones = cleaned_text_to_sequence(phones) | |
return phones, word2ph, norm_text | |
def get_bert_inf(phones, word2ph, bert_tokenizer, bert_model, norm_text, language, is_half=True): | |
language = language.replace("all_", "") | |
if language == "zh": | |
bert = get_bert_feature(norm_text, bert_tokenizer, bert_model, word2ph).to(DEVICE) # .to(dtype) | |
else: | |
bert = torch.zeros((1024, len(phones)), dtype=torch.float16 if is_half else torch.float32).to(DEVICE) | |
return bert | |
def get_first(text): | |
pattern = "[" + "".join(re.escape(sep) for sep in symbol_splits) + "]" | |
text = re.split(pattern, text)[0].strip() | |
return text | |
def get_phones_and_bert(text, bert_tokenizer, bert_model, language, is_half=True): | |
if language in {"en", "all_zh", "all_ja"}: | |
language = language.replace("all_", "") | |
if language == "en": | |
LangSegment.setfilters(["en"]) | |
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text)) | |
else: | |
# 因无法区别中日文汉字,以用户输入为准 | |
formattext = text | |
while " " in formattext: | |
formattext = formattext.replace(" ", " ") | |
phones, word2ph, norm_text = clean_text_inf(formattext, language) | |
if language == "zh": | |
bert = get_bert_feature(norm_text, bert_tokenizer, bert_model, word2ph).to(DEVICE) | |
else: | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half else torch.float32, | |
).to(DEVICE) | |
elif language in {"zh", "ja", "auto"}: | |
textlist = [] | |
langlist = [] | |
LangSegment.setfilters(["zh", "ja", "en", "ko"]) | |
if language == "auto": | |
for tmp in LangSegment.getTexts(text): | |
if tmp["lang"] == "ko": | |
langlist.append("zh") | |
textlist.append(tmp["text"]) | |
else: | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
else: | |
for tmp in LangSegment.getTexts(text): | |
if tmp["lang"] == "en": | |
langlist.append(tmp["lang"]) | |
else: | |
# 因无法区别中日文汉字,以用户输入为准 | |
langlist.append(language) | |
textlist.append(tmp["text"]) | |
print(textlist) | |
print(langlist) | |
phones_list = [] | |
bert_list = [] | |
norm_text_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
bert = get_bert_inf(phones, word2ph, bert_tokenizer, bert_model, norm_text, lang, is_half) | |
phones_list.append(phones) | |
norm_text_list.append(norm_text) | |
bert_list.append(bert) | |
bert = torch.cat(bert_list, dim=1) | |
phones = sum(phones_list, []) | |
norm_text = "".join(norm_text_list) | |
return phones, bert.to(torch.float16 if is_half else torch.float32), norm_text | |
def merge_short_text_in_array(texts, threshold): | |
if (len(texts)) < 2: | |
return texts | |
result = [] | |
text = "" | |
for ele in texts: | |
text += ele | |
if len(text) >= threshold: | |
result.append(text) | |
text = "" | |
if len(text) > 0: | |
if len(result) == 0: | |
result.append(text) | |
else: | |
result[len(result) - 1] += text | |
return result | |
def get_tts_wav( | |
text, | |
text_language, | |
bert_tokenizer, | |
bert_model, | |
ssl_model, | |
vq_model, | |
hps, | |
max_sec, | |
t2s_model: Text2SemanticLightningModule, | |
ref_wav_path, | |
prompt, | |
refer, | |
bert1, | |
phones1, | |
zero_wav, | |
prompt_text, | |
prompt_language, | |
how_to_cut="不切", | |
top_k=20, | |
top_p=0.6, | |
temperature=0.6, | |
ref_free=False, | |
is_half=True, | |
process_bar=None, | |
): | |
dict_language = { | |
"中文": "all_zh", # 全部按中文识别 | |
"英文": "en", # 全部按英文识别#######不变 | |
"日文": "all_ja", # 全部按日文识别 | |
"中英混合": "zh", # 按中英混合识别####不变 | |
"日英混合": "ja", # 按日英混合识别####不变 | |
"多语种混合": "auto", # 多语种启动切分识别语种 | |
} | |
prompt_language = dict_language[prompt_language] | |
text_language = dict_language[text_language] | |
text = text.strip("\n") | |
if text[0] not in symbol_splits and len(get_first(text)) < 4: | |
text = "。" + text | |
print("=" * 20, "\n实际输入的目标文本:", text) | |
text = cut_sentences(text, how_to_cut) | |
print("=" * 20, "\n实际输入的目标文本(切句后):", text) | |
texts = text.split("\n") | |
texts = merge_short_text_in_array(texts, 5) # 小于 5 个字符的句子和上一句合并 | |
audio_opt = [] | |
# if not ref_free: | |
# phones1, bert1, _ = get_phones_and_bert(prompt_text, bert_tokenizer, bert_model, prompt_language, is_half) | |
for text_idx, text in enumerate(texts): | |
if process_bar is not None: | |
percent_complete = (text_idx + 1) / len(texts) | |
process_bar.progress(percent_complete, text=f"正在生成语音 {round(percent_complete * 100, 2)} % ...") | |
# 解决输入目标文本的空行导致报错的问题 | |
if len(text.strip()) == 0: | |
continue | |
if text[-1] not in symbol_splits: | |
text += "。" if text_language != "en" else "." | |
print("=" * 20, "\n实际输入的目标文本(每句):", text) | |
phones2, bert2, norm_text2 = get_phones_and_bert(text, bert_tokenizer, bert_model, text_language, is_half) | |
print("=" * 20, "\n前端处理后的文本(每句):", norm_text2) | |
if not ref_free: | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(DEVICE).unsqueeze(0) | |
else: | |
pass | |
# bert = bert2 | |
# all_phoneme_ids = torch.LongTensor(phones2).to(DEVICE).unsqueeze(0) | |
bert = bert.to(DEVICE).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(DEVICE) | |
with torch.no_grad(): | |
pred_semantic, idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
None if ref_free else prompt, | |
bert, | |
top_k=top_k, | |
top_p=top_p, | |
temperature=temperature, | |
early_stop_num=HZ * max_sec, | |
) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0) # mq要多unsqueeze一次 | |
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
audio = ( | |
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(DEVICE).unsqueeze(0), refer).detach().cpu().numpy()[0, 0] | |
) ###试试重建不带上prompt部分 | |
max_audio = np.abs(audio).max() # 简单防止 16bit 爆音 | |
if max_audio > 1: | |
audio /= max_audio | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
return hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) | |
def split_txt(todo_text): | |
"""根据 symbol_splits 标点切分句子 | |
Args: | |
todo_text (str): 原文本 | |
Returns: | |
list: 切后的文本 list | |
""" | |
todo_text = todo_text.replace("……", "。").replace("——", ",") | |
if todo_text[-1] not in symbol_splits: | |
todo_text += "。" # 尾部加入 。 | |
i_split_head = i_split_tail = 0 | |
len_text = len(todo_text) | |
todo_texts = [] | |
while 1: | |
if i_split_head >= len_text: | |
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
if todo_text[i_split_head] in symbol_splits: | |
i_split_head += 1 | |
todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
i_split_tail = i_split_head | |
else: | |
i_split_head += 1 | |
return todo_texts | |
def cut_sentences(input_text, how_to_cut): | |
inp = input_text.strip("\n") | |
if how_to_cut == "凑四句一切": | |
inps = split_txt(inp) # 根据标点符号直接切 | |
split_idx = list(range(0, len(inps), 4)) | |
split_idx[-1] = None | |
if len(split_idx) > 1: | |
opts = [] | |
for idx in range(len(split_idx) - 1): | |
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]])) | |
else: | |
opts = [inp] | |
cut_txt = "\n".join(opts) | |
elif how_to_cut == "凑50字一切": | |
inps = split_txt(inp) | |
if len(inps) < 2: | |
return inp | |
opts = [] | |
summ = 0 | |
tmp_str = "" | |
for i in range(len(inps)): | |
summ += len(inps[i]) | |
tmp_str += inps[i] | |
if summ > 50: | |
summ = 0 | |
opts.append(tmp_str) | |
tmp_str = "" | |
if tmp_str != "": | |
opts.append(tmp_str) | |
# print(opts) | |
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 | |
opts[-2] = opts[-2] + opts[-1] | |
opts = opts[:-1] | |
cut_txt = "\n".join(opts) | |
elif how_to_cut == "按中文句号。切": | |
cut_txt = "\n".join(["%s" % item for item in inp.strip("。").split("。")]) | |
elif how_to_cut == "按英文句号.切": | |
cut_txt = "\n".join(["%s" % item for item in inp.strip(".").split(".")]) | |
elif how_to_cut == "按标点符号切": | |
punds = r"[,.;?!、,。?!;:…]" | |
items = re.split(f"({punds})", inp) | |
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])] | |
# 在句子不存在符号或句尾无符号的时候保证文本完整 | |
if len(items) % 2 == 1: | |
mergeitems.append(items[-1]) | |
cut_txt = "\n".join(mergeitems) | |
else: | |
cut_txt = inp | |
cut_txt = cut_txt.replace("\n\n", "\n") | |
return cut_txt | |
def get_gpt_and_sovits_model_path(tts_model_root: Path): | |
gpt_path_list = [i for i in tts_model_root.glob("*.ckpt")] | |
sovits_path_list = [i for i in tts_model_root.glob("*.pth")] | |
if len(gpt_path_list) > 0 and len(sovits_path_list) > 0: | |
return str(gpt_path_list[0]), str(sovits_path_list[0]) | |
else: | |
return None, None | |
class HandlerTTS: | |
bert_tokenizer: BertTokenizerFast | |
bert_model: BertForMaskedLM | |
ssl_model: CNHubert | |
max_sec: KeyboardInterrupt | |
t2s_model: Text2SemanticLightningModule | |
vq_model: SynthesizerTrn | |
hps: HParams | |
inp_ref: str | |
prompt_text: str | |
prompt: torch.Tensor | |
refer: torch.Tensor | |
bert1: torch.Tensor | |
phones1: list | |
zero_wav: np.ndarray | |
def get_tts_model(voice_character_name="艾丝妲", is_half=True): | |
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" | |
from huggingface_hub import hf_hub_download, snapshot_download | |
# https://huggingface.co/baicai1145/GPT-SoVITS-STAR/tree/main | |
tts_star_model_root = Path(WEB_CONFIGS.TTS_MODEL_DIR).joinpath("star") | |
gpt_path, sovits_path = get_gpt_and_sovits_model_path(tts_star_model_root) | |
if gpt_path is None: | |
if tts_star_model_root.exists(): | |
# 有可能中断了下载,先删除文件夹 | |
shutil.rmtree(tts_star_model_root) | |
# 直接下载单个文件 | |
tts_model_dir = hf_hub_download( | |
repo_id="baicai1145/GPT-SoVITS-STAR", | |
filename=f"{voice_character_name}.zip", | |
local_dir=str(tts_star_model_root), | |
) | |
# 解压 | |
os.system(f"cd {str(tts_star_model_root)} && unzip {voice_character_name}.zip") | |
logger.info(f"============ TTS 模型信息 ============") | |
gpt_path, sovits_path = get_gpt_and_sovits_model_path(tts_star_model_root) | |
logger.info(f"gpt_path dir = {gpt_path}") | |
logger.info(f"sovits_path dir = {sovits_path}") | |
ref_wav_path = Path(tts_star_model_root).joinpath("参考音频", WEB_CONFIGS.TTS_INF_NAME) | |
prompt_text = WEB_CONFIGS.TTS_INF_NAME.split("-")[-1].replace(".wav", "") | |
logger.info(f"ref_wav_path = {ref_wav_path}") | |
logger.info(f"prompt_text = {prompt_text}") | |
logger.info(f"====================================") | |
# https://huggingface.co/lj1995/GPT-SoVITS/tree/main | |
tts_model_dir = snapshot_download(repo_id="lj1995/GPT-SoVITS", local_dir=Path(WEB_CONFIGS.TTS_MODEL_DIR).joinpath("pretrain")) | |
cnhubert_base_path = os.path.join(tts_model_dir, "chinese-hubert-base") | |
bert_path = os.path.join(tts_model_dir, "chinese-roberta-wwm-ext-large") | |
print(f"cnhubert_base_path dir = {cnhubert_base_path}") | |
print(f"bert_path dir = {bert_path}") | |
print("Loading tts bert model...") | |
bert_tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
if is_half: | |
bert_model = bert_model.half() | |
bert_model = bert_model.to(DEVICE) | |
print("load tts bert model done!") | |
print("Loading tts ssl model...") | |
ssl_model = cnhubert.get_model(cnhubert_base_path) | |
if is_half: | |
ssl_model = ssl_model.half() | |
ssl_model = ssl_model.to(DEVICE) | |
print("load tts ssl model done !") | |
max_sec, t2s_model = change_gpt_weights(gpt_path, is_half) | |
vq_model, hps = change_sovits_weights(sovits_path, is_half) | |
zero_wav = np.zeros( | |
int(hps.data.sampling_rate * 0.3), | |
dtype=np.float16 if is_half else np.float32, | |
) | |
print("=" * 20, "\n加载参考音频 。。。") | |
t1 = time.time() | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000: | |
raise OSError("参考音频在3~10秒范围外,请更换!") | |
wav16k = torch.from_numpy(wav16k) | |
zero_wav_torch = torch.from_numpy(zero_wav) | |
wav16k = wav16k.half() | |
zero_wav_torch = zero_wav_torch.half() | |
wav16k = wav16k.to(DEVICE) | |
zero_wav_torch = zero_wav_torch.to(DEVICE) | |
wav16k = torch.cat([wav16k, zero_wav_torch]) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
prompt = prompt_semantic.unsqueeze(0).to(DEVICE) | |
print("加载 参考音频 用时: ", time.time() - t1) | |
t3 = time.time() | |
refer = get_spepc(hps, ref_wav_path) | |
if is_half: | |
refer = refer.half() | |
refer = refer.to(DEVICE) | |
print("get_spepc 用时: ", time.time() - t3) | |
ref_free = False | |
dict_language = { | |
"中文": "all_zh", # 全部按中文识别 | |
"英文": "en", # 全部按英文识别#######不变 | |
"日文": "all_ja", # 全部按日文识别 | |
"中英混合": "zh", # 按中英混合识别####不变 | |
"日英混合": "ja", # 按日英混合识别####不变 | |
"多语种混合": "auto", # 多语种启动切分识别语种 | |
} | |
prompt_text = prompt_text.strip("\n") | |
if prompt_text[-1] not in symbol_splits: | |
prompt_text += "。" | |
print("=" * 20, "\n音频参考文本:", prompt_text) | |
if not ref_free: | |
phones1, bert1, _ = get_phones_and_bert(prompt_text, bert_tokenizer, bert_model, dict_language["中英混合"], is_half) | |
tts_handler = HandlerTTS( | |
bert_tokenizer=bert_tokenizer, | |
bert_model=bert_model, | |
ssl_model=ssl_model, | |
max_sec=max_sec, | |
t2s_model=t2s_model, | |
vq_model=vq_model, | |
hps=hps, | |
inp_ref=str(ref_wav_path), | |
prompt_text=prompt_text, | |
prompt=prompt, | |
refer=refer, | |
bert1=bert1, | |
phones1=phones1, | |
zero_wav=zero_wav, | |
) | |
return tts_handler | |
def gen_tts_wav( | |
text, | |
text_language, | |
bert_tokenizer, | |
bert_model, | |
ssl_model, | |
vq_model, | |
hps, | |
max_sec, | |
t2s_model, | |
inp_ref, | |
prompt_text, | |
prompt, | |
refer, | |
bert1, | |
phones1, | |
zero_wav, | |
wav_path_output, | |
how_to_cut="凑四句一切", # ["不切", "凑四句一切", "凑50字一切", "按中文句号。切", "按英文句号.切", "按标点符号切"] | |
): | |
# process_bar = st.progress(0, text="正在生成语音...") | |
process_bar = None | |
# 推理 | |
sampling_rate, audio_data = get_tts_wav( | |
text, | |
text_language, | |
bert_tokenizer, | |
bert_model, | |
ssl_model, | |
vq_model, | |
hps, | |
max_sec, | |
t2s_model, | |
inp_ref, | |
prompt, | |
refer, | |
bert1, | |
phones1, | |
zero_wav, | |
prompt_text, | |
prompt_language="中英混合", | |
how_to_cut=how_to_cut, | |
top_k=5, # 0 ~ 100 | |
top_p=1, # 0. ~ 1. | |
temperature=1, # 0. ~ 1. | |
ref_free=False, | |
is_half=True, | |
process_bar=process_bar, | |
) | |
# process_bar.progress(1, text=f"正在生成语音 100.00 % ...") | |
# process_bar.empty() | |
# 保存 | |
wav = BytesIO() | |
sf.write(wav, audio_data, sampling_rate, format="wav") | |
wav.seek(0) | |
with open(wav_path_output, "wb") as f: | |
f.write(wav.getvalue()) | |
print("output:", wav_path_output) | |
def demo(): | |
# https://huggingface.co/baicai1145/GPT-SoVITS-STAR/tree/main | |
gpt_path = "./work_dirs/gpt_sovits/weights/GPT_weights/艾丝妲-e10.ckpt" | |
sovits_path = "./work_dirs/gpt_sovits/weights/SoVITS_weights/艾丝妲_e25_s925.pth" | |
# https://huggingface.co/lj1995/GPT-SoVITS/tree/main | |
cnhubert_base_path = "./work_dirs/gpt_sovits/weights/pretrained_models/chinese-hubert-base" | |
bert_path = "./work_dirs/utils/tts/gpt_sovits/weights/pretrained_models/chinese-roberta-wwm-ext-large" | |
inp_ref = r"./work_dirs/ref_wav/【开心】处理完之前的事情,这几天甚至都有空闲来车上转转了。.wav" | |
bert_tokenizer, bert_model, ssl_model, max_sec, t2s_model, vq_model, hps = get_tts_model( | |
bert_path, cnhubert_base_path, gpt_path, sovits_path, is_half=True | |
) | |
text = """哈喽哈喽,家人们好啊!今天呀,咱们这儿可是有大大的福利等着大家哦你们猜猜看是什么呢?没错啦,就是这款超级棒的本草精华洗发露啦!哎呀,我知道你们一定都想知道它的神奇之处吧?那就让小甜心来给你们一一揭秘吧💖 | |
首先呢,这款洗发露的配方真的是超级温和的哦,就算是敏感肌的小仙女们也能安心使用呢!而且它还能深层清洁我们的头皮,把那些烦人的油脂和污垢通通赶走,让我们的头发更加清爽健康呢!💦💦 | |
再来就是它的滋养效果啦,富含多种草本精华,轻轻一抹就能给我们的头皮提供满满的养分,让秀发更加乌黑亮丽,顺滑如丝哦!💖💖💖 | |
还有啊,这款洗发露的泡沫真的是超级丰富呢!轻轻一挤就能挤出好多好多细腻绵密的泡沫来,洗起来既舒服又干净,感觉就像是在给我们的头发做SPA一样呢!💖💖💖 | |
最后啊,这款洗发露还特别容易冲洗哦!用完之后轻轻一冲就能把泡沫全部冲洗干净,不会残留任何黏腻感,让你随时随地保持清爽状态哦!💦💦💦 | |
而且呀,这款洗发露不仅适用于各种发质,无论是油性、干性还是混合性,都能轻松应对呢!所以家人们,无论你是哪种发质,只要用了这款洗发露,保证让你的头发焕发出前所未有的光彩哦!💖💖💖 | |
好啦,家人们,这么一款集温和、深层清洁、滋养、丰富泡沫、易冲洗于一身的神级洗发露,你们是不是已经心动了呢?快来把它带回家吧,让你的秀发从此告别烦恼,迎接美丽新世界吧!💖💖💖""" | |
text_language = "中英混合" | |
gen_tts_wav( | |
text, | |
text_language, | |
bert_tokenizer, | |
bert_model, | |
ssl_model, | |
vq_model, | |
hps, | |
max_sec, | |
t2s_model, | |
inp_ref, | |
wav_path_output=r"./work_dirs/tts_wavs/gpt-sovits-test.wav", | |
) | |
if __name__ == "__main__": | |
demo() | |