File size: 23,698 Bytes
1ef9436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
"""
TTS
https://github.com/RVC-Boss/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
"""
import os
import re
import shutil
import time
from dataclasses import dataclass
from io import BytesIO
from pathlib import Path
import LangSegment
import librosa
import numpy as np
import soundfile as sf
import torch
from loguru import logger
from transformers import AutoModelForMaskedLM, AutoTokenizer
from transformers.models.bert.modeling_bert import BertForMaskedLM
from transformers.models.bert.tokenization_bert_fast import BertTokenizerFast
from utils import HParams
from ....web_configs import WEB_CONFIGS
from .AR.models.t2s_lightning_module import Text2SemanticLightningModule
from .module import cnhubert
from .module.cnhubert import CNHubert
from .module.mel_processing import spectrogram_torch
from .module.models import SynthesizerTrn
from .text import cleaned_text_to_sequence
from .text.cleaner import clean_text
from .utils import load_audio
symbol_splits = {
",",
"。",
"?",
"!",
",",
".",
"?",
"!",
"~",
":",
":",
"—",
"…",
}
DEVICE = "cuda"
HZ = 50
def get_bert_feature(text, bert_tokenizer, bert_model, word2ph):
with torch.no_grad():
inputs = bert_tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(DEVICE)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
def change_sovits_weights(sovits_path, is_half):
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
hps.model.semantic_frame_rate = "25hz"
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
)
if "pretrained" not in sovits_path:
del vq_model.enc_q
if is_half:
vq_model = vq_model.half()
vq_model = vq_model.to(DEVICE)
vq_model.eval()
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
return vq_model, hps
def change_gpt_weights(gpt_path, is_half):
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(DEVICE)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
return max_sec, t2s_model
def get_spepc(hps, filename):
audio = load_audio(filename, int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
audio_norm,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
return spec
def clean_text_inf(text, language):
phones, word2ph, norm_text = clean_text(text, language)
phones = cleaned_text_to_sequence(phones)
return phones, word2ph, norm_text
def get_bert_inf(phones, word2ph, bert_tokenizer, bert_model, norm_text, language, is_half=True):
language = language.replace("all_", "")
if language == "zh":
bert = get_bert_feature(norm_text, bert_tokenizer, bert_model, word2ph).to(DEVICE) # .to(dtype)
else:
bert = torch.zeros((1024, len(phones)), dtype=torch.float16 if is_half else torch.float32).to(DEVICE)
return bert
def get_first(text):
pattern = "[" + "".join(re.escape(sep) for sep in symbol_splits) + "]"
text = re.split(pattern, text)[0].strip()
return text
def get_phones_and_bert(text, bert_tokenizer, bert_model, language, is_half=True):
if language in {"en", "all_zh", "all_ja"}:
language = language.replace("all_", "")
if language == "en":
LangSegment.setfilters(["en"])
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
else:
# 因无法区别中日文汉字,以用户输入为准
formattext = text
while " " in formattext:
formattext = formattext.replace(" ", " ")
phones, word2ph, norm_text = clean_text_inf(formattext, language)
if language == "zh":
bert = get_bert_feature(norm_text, bert_tokenizer, bert_model, word2ph).to(DEVICE)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half else torch.float32,
).to(DEVICE)
elif language in {"zh", "ja", "auto"}:
textlist = []
langlist = []
LangSegment.setfilters(["zh", "ja", "en", "ko"])
if language == "auto":
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "ko":
langlist.append("zh")
textlist.append(tmp["text"])
else:
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
else:
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "en":
langlist.append(tmp["lang"])
else:
# 因无法区别中日文汉字,以用户输入为准
langlist.append(language)
textlist.append(tmp["text"])
print(textlist)
print(langlist)
phones_list = []
bert_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
bert = get_bert_inf(phones, word2ph, bert_tokenizer, bert_model, norm_text, lang, is_half)
phones_list.append(phones)
norm_text_list.append(norm_text)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
phones = sum(phones_list, [])
norm_text = "".join(norm_text_list)
return phones, bert.to(torch.float16 if is_half else torch.float32), norm_text
def merge_short_text_in_array(texts, threshold):
if (len(texts)) < 2:
return texts
result = []
text = ""
for ele in texts:
text += ele
if len(text) >= threshold:
result.append(text)
text = ""
if len(text) > 0:
if len(result) == 0:
result.append(text)
else:
result[len(result) - 1] += text
return result
def get_tts_wav(
text,
text_language,
bert_tokenizer,
bert_model,
ssl_model,
vq_model,
hps,
max_sec,
t2s_model: Text2SemanticLightningModule,
ref_wav_path,
prompt,
refer,
bert1,
phones1,
zero_wav,
prompt_text,
prompt_language,
how_to_cut="不切",
top_k=20,
top_p=0.6,
temperature=0.6,
ref_free=False,
is_half=True,
process_bar=None,
):
dict_language = {
"中文": "all_zh", # 全部按中文识别
"英文": "en", # 全部按英文识别#######不变
"日文": "all_ja", # 全部按日文识别
"中英混合": "zh", # 按中英混合识别####不变
"日英混合": "ja", # 按日英混合识别####不变
"多语种混合": "auto", # 多语种启动切分识别语种
}
prompt_language = dict_language[prompt_language]
text_language = dict_language[text_language]
text = text.strip("\n")
if text[0] not in symbol_splits and len(get_first(text)) < 4:
text = "。" + text
print("=" * 20, "\n实际输入的目标文本:", text)
text = cut_sentences(text, how_to_cut)
print("=" * 20, "\n实际输入的目标文本(切句后):", text)
texts = text.split("\n")
texts = merge_short_text_in_array(texts, 5) # 小于 5 个字符的句子和上一句合并
audio_opt = []
# if not ref_free:
# phones1, bert1, _ = get_phones_and_bert(prompt_text, bert_tokenizer, bert_model, prompt_language, is_half)
for text_idx, text in enumerate(texts):
if process_bar is not None:
percent_complete = (text_idx + 1) / len(texts)
process_bar.progress(percent_complete, text=f"正在生成语音 {round(percent_complete * 100, 2)} % ...")
# 解决输入目标文本的空行导致报错的问题
if len(text.strip()) == 0:
continue
if text[-1] not in symbol_splits:
text += "。" if text_language != "en" else "."
print("=" * 20, "\n实际输入的目标文本(每句):", text)
phones2, bert2, norm_text2 = get_phones_and_bert(text, bert_tokenizer, bert_model, text_language, is_half)
print("=" * 20, "\n前端处理后的文本(每句):", norm_text2)
if not ref_free:
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(DEVICE).unsqueeze(0)
else:
pass
# bert = bert2
# all_phoneme_ids = torch.LongTensor(phones2).to(DEVICE).unsqueeze(0)
bert = bert.to(DEVICE).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(DEVICE)
with torch.no_grad():
pred_semantic, idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
None if ref_free else prompt,
bert,
top_k=top_k,
top_p=top_p,
temperature=temperature,
early_stop_num=HZ * max_sec,
)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0) # mq要多unsqueeze一次
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = (
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(DEVICE).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]
) ###试试重建不带上prompt部分
max_audio = np.abs(audio).max() # 简单防止 16bit 爆音
if max_audio > 1:
audio /= max_audio
audio_opt.append(audio)
audio_opt.append(zero_wav)
return hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)
def split_txt(todo_text):
"""根据 symbol_splits 标点切分句子
Args:
todo_text (str): 原文本
Returns:
list: 切后的文本 list
"""
todo_text = todo_text.replace("……", "。").replace("——", ",")
if todo_text[-1] not in symbol_splits:
todo_text += "。" # 尾部加入 。
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while 1:
if i_split_head >= len_text:
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if todo_text[i_split_head] in symbol_splits:
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def cut_sentences(input_text, how_to_cut):
inp = input_text.strip("\n")
if how_to_cut == "凑四句一切":
inps = split_txt(inp) # 根据标点符号直接切
split_idx = list(range(0, len(inps), 4))
split_idx[-1] = None
if len(split_idx) > 1:
opts = []
for idx in range(len(split_idx) - 1):
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
else:
opts = [inp]
cut_txt = "\n".join(opts)
elif how_to_cut == "凑50字一切":
inps = split_txt(inp)
if len(inps) < 2:
return inp
opts = []
summ = 0
tmp_str = ""
for i in range(len(inps)):
summ += len(inps[i])
tmp_str += inps[i]
if summ > 50:
summ = 0
opts.append(tmp_str)
tmp_str = ""
if tmp_str != "":
opts.append(tmp_str)
# print(opts)
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
opts[-2] = opts[-2] + opts[-1]
opts = opts[:-1]
cut_txt = "\n".join(opts)
elif how_to_cut == "按中文句号。切":
cut_txt = "\n".join(["%s" % item for item in inp.strip("。").split("。")])
elif how_to_cut == "按英文句号.切":
cut_txt = "\n".join(["%s" % item for item in inp.strip(".").split(".")])
elif how_to_cut == "按标点符号切":
punds = r"[,.;?!、,。?!;:…]"
items = re.split(f"({punds})", inp)
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
# 在句子不存在符号或句尾无符号的时候保证文本完整
if len(items) % 2 == 1:
mergeitems.append(items[-1])
cut_txt = "\n".join(mergeitems)
else:
cut_txt = inp
cut_txt = cut_txt.replace("\n\n", "\n")
return cut_txt
def get_gpt_and_sovits_model_path(tts_model_root: Path):
gpt_path_list = [i for i in tts_model_root.glob("*.ckpt")]
sovits_path_list = [i for i in tts_model_root.glob("*.pth")]
if len(gpt_path_list) > 0 and len(sovits_path_list) > 0:
return str(gpt_path_list[0]), str(sovits_path_list[0])
else:
return None, None
@dataclass
class HandlerTTS:
bert_tokenizer: BertTokenizerFast
bert_model: BertForMaskedLM
ssl_model: CNHubert
max_sec: KeyboardInterrupt
t2s_model: Text2SemanticLightningModule
vq_model: SynthesizerTrn
hps: HParams
inp_ref: str
prompt_text: str
prompt: torch.Tensor
refer: torch.Tensor
bert1: torch.Tensor
phones1: list
zero_wav: np.ndarray
def get_tts_model(voice_character_name="艾丝妲", is_half=True):
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
from huggingface_hub import hf_hub_download, snapshot_download
# https://huggingface.co/baicai1145/GPT-SoVITS-STAR/tree/main
tts_star_model_root = Path(WEB_CONFIGS.TTS_MODEL_DIR).joinpath("star")
gpt_path, sovits_path = get_gpt_and_sovits_model_path(tts_star_model_root)
if gpt_path is None:
if tts_star_model_root.exists():
# 有可能中断了下载,先删除文件夹
shutil.rmtree(tts_star_model_root)
# 直接下载单个文件
tts_model_dir = hf_hub_download(
repo_id="baicai1145/GPT-SoVITS-STAR",
filename=f"{voice_character_name}.zip",
local_dir=str(tts_star_model_root),
)
# 解压
os.system(f"cd {str(tts_star_model_root)} && unzip {voice_character_name}.zip")
logger.info(f"============ TTS 模型信息 ============")
gpt_path, sovits_path = get_gpt_and_sovits_model_path(tts_star_model_root)
logger.info(f"gpt_path dir = {gpt_path}")
logger.info(f"sovits_path dir = {sovits_path}")
ref_wav_path = Path(tts_star_model_root).joinpath("参考音频", WEB_CONFIGS.TTS_INF_NAME)
prompt_text = WEB_CONFIGS.TTS_INF_NAME.split("-")[-1].replace(".wav", "")
logger.info(f"ref_wav_path = {ref_wav_path}")
logger.info(f"prompt_text = {prompt_text}")
logger.info(f"====================================")
# https://huggingface.co/lj1995/GPT-SoVITS/tree/main
tts_model_dir = snapshot_download(repo_id="lj1995/GPT-SoVITS", local_dir=Path(WEB_CONFIGS.TTS_MODEL_DIR).joinpath("pretrain"))
cnhubert_base_path = os.path.join(tts_model_dir, "chinese-hubert-base")
bert_path = os.path.join(tts_model_dir, "chinese-roberta-wwm-ext-large")
print(f"cnhubert_base_path dir = {cnhubert_base_path}")
print(f"bert_path dir = {bert_path}")
print("Loading tts bert model...")
bert_tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half:
bert_model = bert_model.half()
bert_model = bert_model.to(DEVICE)
print("load tts bert model done!")
print("Loading tts ssl model...")
ssl_model = cnhubert.get_model(cnhubert_base_path)
if is_half:
ssl_model = ssl_model.half()
ssl_model = ssl_model.to(DEVICE)
print("load tts ssl model done !")
max_sec, t2s_model = change_gpt_weights(gpt_path, is_half)
vq_model, hps = change_sovits_weights(sovits_path, is_half)
zero_wav = np.zeros(
int(hps.data.sampling_rate * 0.3),
dtype=np.float16 if is_half else np.float32,
)
print("=" * 20, "\n加载参考音频 。。。")
t1 = time.time()
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000:
raise OSError("参考音频在3~10秒范围外,请更换!")
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
wav16k = wav16k.half()
zero_wav_torch = zero_wav_torch.half()
wav16k = wav16k.to(DEVICE)
zero_wav_torch = zero_wav_torch.to(DEVICE)
wav16k = torch.cat([wav16k, zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
prompt = prompt_semantic.unsqueeze(0).to(DEVICE)
print("加载 参考音频 用时: ", time.time() - t1)
t3 = time.time()
refer = get_spepc(hps, ref_wav_path)
if is_half:
refer = refer.half()
refer = refer.to(DEVICE)
print("get_spepc 用时: ", time.time() - t3)
ref_free = False
dict_language = {
"中文": "all_zh", # 全部按中文识别
"英文": "en", # 全部按英文识别#######不变
"日文": "all_ja", # 全部按日文识别
"中英混合": "zh", # 按中英混合识别####不变
"日英混合": "ja", # 按日英混合识别####不变
"多语种混合": "auto", # 多语种启动切分识别语种
}
prompt_text = prompt_text.strip("\n")
if prompt_text[-1] not in symbol_splits:
prompt_text += "。"
print("=" * 20, "\n音频参考文本:", prompt_text)
if not ref_free:
phones1, bert1, _ = get_phones_and_bert(prompt_text, bert_tokenizer, bert_model, dict_language["中英混合"], is_half)
tts_handler = HandlerTTS(
bert_tokenizer=bert_tokenizer,
bert_model=bert_model,
ssl_model=ssl_model,
max_sec=max_sec,
t2s_model=t2s_model,
vq_model=vq_model,
hps=hps,
inp_ref=str(ref_wav_path),
prompt_text=prompt_text,
prompt=prompt,
refer=refer,
bert1=bert1,
phones1=phones1,
zero_wav=zero_wav,
)
return tts_handler
def gen_tts_wav(
text,
text_language,
bert_tokenizer,
bert_model,
ssl_model,
vq_model,
hps,
max_sec,
t2s_model,
inp_ref,
prompt_text,
prompt,
refer,
bert1,
phones1,
zero_wav,
wav_path_output,
how_to_cut="凑四句一切", # ["不切", "凑四句一切", "凑50字一切", "按中文句号。切", "按英文句号.切", "按标点符号切"]
):
# process_bar = st.progress(0, text="正在生成语音...")
process_bar = None
# 推理
sampling_rate, audio_data = get_tts_wav(
text,
text_language,
bert_tokenizer,
bert_model,
ssl_model,
vq_model,
hps,
max_sec,
t2s_model,
inp_ref,
prompt,
refer,
bert1,
phones1,
zero_wav,
prompt_text,
prompt_language="中英混合",
how_to_cut=how_to_cut,
top_k=5, # 0 ~ 100
top_p=1, # 0. ~ 1.
temperature=1, # 0. ~ 1.
ref_free=False,
is_half=True,
process_bar=process_bar,
)
# process_bar.progress(1, text=f"正在生成语音 100.00 % ...")
# process_bar.empty()
# 保存
wav = BytesIO()
sf.write(wav, audio_data, sampling_rate, format="wav")
wav.seek(0)
with open(wav_path_output, "wb") as f:
f.write(wav.getvalue())
print("output:", wav_path_output)
def demo():
# https://huggingface.co/baicai1145/GPT-SoVITS-STAR/tree/main
gpt_path = "./work_dirs/gpt_sovits/weights/GPT_weights/艾丝妲-e10.ckpt"
sovits_path = "./work_dirs/gpt_sovits/weights/SoVITS_weights/艾丝妲_e25_s925.pth"
# https://huggingface.co/lj1995/GPT-SoVITS/tree/main
cnhubert_base_path = "./work_dirs/gpt_sovits/weights/pretrained_models/chinese-hubert-base"
bert_path = "./work_dirs/utils/tts/gpt_sovits/weights/pretrained_models/chinese-roberta-wwm-ext-large"
inp_ref = r"./work_dirs/ref_wav/【开心】处理完之前的事情,这几天甚至都有空闲来车上转转了。.wav"
bert_tokenizer, bert_model, ssl_model, max_sec, t2s_model, vq_model, hps = get_tts_model(
bert_path, cnhubert_base_path, gpt_path, sovits_path, is_half=True
)
text = """哈喽哈喽,家人们好啊!今天呀,咱们这儿可是有大大的福利等着大家哦你们猜猜看是什么呢?没错啦,就是这款超级棒的本草精华洗发露啦!哎呀,我知道你们一定都想知道它的神奇之处吧?那就让小甜心来给你们一一揭秘吧💖
首先呢,这款洗发露的配方真的是超级温和的哦,就算是敏感肌的小仙女们也能安心使用呢!而且它还能深层清洁我们的头皮,把那些烦人的油脂和污垢通通赶走,让我们的头发更加清爽健康呢!💦💦
再来就是它的滋养效果啦,富含多种草本精华,轻轻一抹就能给我们的头皮提供满满的养分,让秀发更加乌黑亮丽,顺滑如丝哦!💖💖💖
还有啊,这款洗发露的泡沫真的是超级丰富呢!轻轻一挤就能挤出好多好多细腻绵密的泡沫来,洗起来既舒服又干净,感觉就像是在给我们的头发做SPA一样呢!💖💖💖
最后啊,这款洗发露还特别容易冲洗哦!用完之后轻轻一冲就能把泡沫全部冲洗干净,不会残留任何黏腻感,让你随时随地保持清爽状态哦!💦💦💦
而且呀,这款洗发露不仅适用于各种发质,无论是油性、干性还是混合性,都能轻松应对呢!所以家人们,无论你是哪种发质,只要用了这款洗发露,保证让你的头发焕发出前所未有的光彩哦!💖💖💖
好啦,家人们,这么一款集温和、深层清洁、滋养、丰富泡沫、易冲洗于一身的神级洗发露,你们是不是已经心动了呢?快来把它带回家吧,让你的秀发从此告别烦恼,迎接美丽新世界吧!💖💖💖"""
text_language = "中英混合"
gen_tts_wav(
text,
text_language,
bert_tokenizer,
bert_model,
ssl_model,
vq_model,
hps,
max_sec,
t2s_model,
inp_ref,
wav_path_output=r"./work_dirs/tts_wavs/gpt-sovits-test.wav",
)
if __name__ == "__main__":
demo()
|