|
import gradio as gr |
|
import numpy as np |
|
import spaces |
|
import torch |
|
import random |
|
from peft import PeftModel |
|
from diffusers import FluxControlPipeline, FluxTransformer2DModel |
|
from image_gen_aux import DepthPreprocessor |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
|
|
pipe = FluxControlPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-Depth-dev", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
pipe.enable_attention_slicing() |
|
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf") |
|
|
|
@spaces.GPU |
|
def load_lora(lora_path): |
|
if not lora_path.strip(): |
|
return "Please provide a valid LoRA path" |
|
try: |
|
|
|
pipe.to("cuda") |
|
|
|
|
|
try: |
|
pipe.unload_lora_weights() |
|
except: |
|
pass |
|
|
|
|
|
pipe.load_lora_weights(lora_path) |
|
return f"Successfully loaded LoRA weights from {lora_path}" |
|
except Exception as e: |
|
return f"Error loading LoRA weights: {str(e)}" |
|
|
|
@spaces.GPU |
|
def unload_lora(): |
|
try: |
|
pipe.to("cuda") |
|
pipe.unload_lora_weights() |
|
return "Successfully unloaded LoRA weights" |
|
except Exception as e: |
|
return f"Error unloading LoRA weights: {str(e)}" |
|
|
|
@spaces.GPU |
|
def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024, |
|
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
try: |
|
|
|
pipe.to("cuda") |
|
|
|
|
|
control_image = processor(control_image)[0].convert("RGB") |
|
|
|
|
|
image = pipe( |
|
prompt=prompt, |
|
control_image=control_image, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
generator=torch.Generator("cuda").manual_seed(seed), |
|
).images[0] |
|
|
|
return image, seed |
|
except Exception as e: |
|
return None, f"Error during inference: {str(e)}" |
|
|
|
css = """ |
|
@keyframes gradientMove { |
|
0% { background-position: 0% 50%; } |
|
50% { background-position: 100% 50%; } |
|
100% { background-position: 0% 50%; } |
|
} |
|
body { |
|
background: black !important; |
|
margin: 0; |
|
min-height: 100vh; |
|
} |
|
body::before { |
|
content: ''; |
|
position: fixed; |
|
top: 0; |
|
left: 0; |
|
right: 0; |
|
bottom: 0; |
|
z-index: -1; |
|
background: |
|
linear-gradient(125deg, rgba(255,105,180,0.3), rgba(0,0,0,0.5)), |
|
url('data:image/svg+xml,<svg viewBox="0 0 200 200" xmlns="http://www.w3.org/2000/svg"><filter id="noise"><feTurbulence type="fractalNoise" baseFrequency="0.005" numOctaves="3" /><feColorMatrix type="saturate" values="0"/></filter><rect width="100%" height="100%" filter="url(%23noise)"/></svg>'); |
|
filter: blur(70px); |
|
animation: gradientMove 15s ease infinite; |
|
background-size: 400% 400%; |
|
opacity: 0.8; |
|
} |
|
:root { |
|
--hot-pink: #FF69B4; |
|
--light-pink: #FFB6C6; |
|
--dark-pink: #FF1493; |
|
} |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 1200px; |
|
padding: 2rem; |
|
background: rgba(0, 0, 0, 0.85); |
|
border-radius: 15px; |
|
box-shadow: 0 0 20px rgba(255, 105, 180, 0.3); |
|
border: 2px solid var(--hot-pink); |
|
position: relative; |
|
z-index: 1; |
|
} |
|
.gr-box { |
|
background: var(--hot-pink) !important; |
|
border: 2px solid black !important; |
|
border-radius: 8px !important; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2) !important; |
|
transition: all 0.3s ease !important; |
|
} |
|
.gr-box:hover { |
|
box-shadow: 0 0 15px rgba(255, 255, 255, 0.3) !important; |
|
} |
|
.gr-button { |
|
background: var(--hot-pink) !important; |
|
border: 2px solid black !important; |
|
color: black !important; |
|
font-weight: 600 !important; |
|
transition: all 0.3s ease !important; |
|
} |
|
.gr-button:hover { |
|
background: var(--dark-pink) !important; |
|
box-shadow: 0 0 15px rgba(255, 255, 255, 0.5); |
|
transform: translateY(-2px); |
|
} |
|
.gr-input, .gr-input-label { |
|
background: var(--hot-pink) !important; |
|
border: 2px solid black !important; |
|
border-radius: 8px !important; |
|
color: black !important; |
|
transition: all 0.3s ease !important; |
|
} |
|
.gr-input::placeholder { |
|
color: rgba(0, 0, 0, 0.6) !important; |
|
} |
|
.gr-input:focus { |
|
box-shadow: 0 0 15px rgba(255, 255, 255, 0.3) !important; |
|
} |
|
.gr-form { |
|
gap: 1.5rem !important; |
|
} |
|
.gr-slider { |
|
accent-color: var(--hot-pink) !important; |
|
} |
|
.gr-slider-value { |
|
color: white !important; |
|
} |
|
.gr-checkbox { |
|
accent-color: var(--hot-pink) !important; |
|
} |
|
.gr-panel { |
|
background: var(--hot-pink) !important; |
|
border: 2px solid black !important; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2) !important; |
|
} |
|
.gr-accordion { |
|
border: 2px solid black !important; |
|
background: var(--hot-pink) !important; |
|
border-radius: 10px !important; |
|
margin-top: 1.5rem !important; |
|
} |
|
label, .gr-box label, .gr-accordion-title { |
|
color: black !important; |
|
font-weight: 600 !important; |
|
} |
|
.markdown { |
|
color: white !important; |
|
} |
|
.markdown a { |
|
color: var(--hot-pink) !important; |
|
text-decoration: none !important; |
|
transition: color 0.3s ease !important; |
|
} |
|
.markdown a:hover { |
|
color: var(--light-pink) !important; |
|
} |
|
.upload-box { |
|
border: 2px dashed var(--hot-pink) !important; |
|
background: rgba(0, 0, 0, 0.3) !important; |
|
transition: all 0.3s ease !important; |
|
} |
|
.upload-box:hover { |
|
border-color: var(--light-pink) !important; |
|
box-shadow: 0 0 15px rgba(255, 105, 180, 0.2) !important; |
|
} |
|
.generating { |
|
box-shadow: 0 0 20px rgba(255, 255, 255, 0.8) !important; |
|
} |
|
.progress-bar { |
|
background: var(--hot-pink) !important; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("""# FLUX.1 Depth [dev] with LoRA Support |
|
(note: clone this repo and run on free gpu, this required hf subscription) 12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) |
|
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] |
|
""") |
|
|
|
with gr.Row(): |
|
lora_path = gr.Textbox( |
|
label="HuggingFace LoRA Path", |
|
placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees", |
|
scale=3 |
|
) |
|
load_lora_btn = gr.Button("Load LoRA", scale=1) |
|
unload_lora_btn = gr.Button("Unload LoRA", scale=1) |
|
|
|
lora_status = gr.Textbox(label="LoRA Status", interactive=False) |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=True, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=True, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=1): |
|
control_image = gr.Image( |
|
label="Control Image", |
|
type="pil", |
|
elem_id="image-upload" |
|
) |
|
with gr.Column(scale=1): |
|
result = gr.Image( |
|
label="Generated Result", |
|
elem_id="result-image" |
|
) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox( |
|
label="Randomize seed", |
|
value=True |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
with gr.Column(scale=1): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=30, |
|
step=0.5, |
|
value=10, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
load_lora_btn.click( |
|
fn=load_lora, |
|
inputs=[lora_path], |
|
outputs=[lora_status] |
|
) |
|
|
|
unload_lora_btn.click( |
|
fn=unload_lora, |
|
inputs=[], |
|
outputs=[lora_status] |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs=[result, seed] |
|
) |
|
|
|
demo.launch() |