Borcherding's picture
Update app.py
066d603 verified
import gradio as gr
import numpy as np
import spaces
import torch
import random
from peft import PeftModel
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from image_gen_aux import DepthPreprocessor
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Initialize models without moving to CUDA yet - following working version
pipe = FluxControlPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16
)
pipe.enable_attention_slicing() # Keep this as it's helpful
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
@spaces.GPU
def load_lora(lora_path):
if not lora_path.strip():
return "Please provide a valid LoRA path"
try:
# Move to GPU within the wrapped function
pipe.to("cuda")
# Unload any existing LoRA weights first
try:
pipe.unload_lora_weights()
except:
pass
# Load new LoRA weights
pipe.load_lora_weights(lora_path)
return f"Successfully loaded LoRA weights from {lora_path}"
except Exception as e:
return f"Error loading LoRA weights: {str(e)}"
@spaces.GPU
def unload_lora():
try:
pipe.to("cuda")
pipe.unload_lora_weights()
return "Successfully unloaded LoRA weights"
except Exception as e:
return f"Error unloading LoRA weights: {str(e)}"
@spaces.GPU
def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024,
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
try:
# Move pipeline to GPU within the wrapped function
pipe.to("cuda")
# Process control image
control_image = processor(control_image)[0].convert("RGB")
# Generate image
image = pipe(
prompt=prompt,
control_image=control_image,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator("cuda").manual_seed(seed),
).images[0]
return image, seed
except Exception as e:
return None, f"Error during inference: {str(e)}"
css = """
@keyframes gradientMove {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
body {
background: black !important;
margin: 0;
min-height: 100vh;
}
body::before {
content: '';
position: fixed;
top: 0;
left: 0;
right: 0;
bottom: 0;
z-index: -1;
background:
linear-gradient(125deg, rgba(255,105,180,0.3), rgba(0,0,0,0.5)),
url('data:image/svg+xml,<svg viewBox="0 0 200 200" xmlns="http://www.w3.org/2000/svg"><filter id="noise"><feTurbulence type="fractalNoise" baseFrequency="0.005" numOctaves="3" /><feColorMatrix type="saturate" values="0"/></filter><rect width="100%" height="100%" filter="url(%23noise)"/></svg>');
filter: blur(70px);
animation: gradientMove 15s ease infinite;
background-size: 400% 400%;
opacity: 0.8;
}
:root {
--hot-pink: #FF69B4;
--light-pink: #FFB6C6;
--dark-pink: #FF1493;
}
#col-container {
margin: 0 auto;
max-width: 1200px;
padding: 2rem;
background: rgba(0, 0, 0, 0.85);
border-radius: 15px;
box-shadow: 0 0 20px rgba(255, 105, 180, 0.3);
border: 2px solid var(--hot-pink);
position: relative;
z-index: 1;
}
.gr-box {
background: var(--hot-pink) !important;
border: 2px solid black !important;
border-radius: 8px !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2) !important;
transition: all 0.3s ease !important;
}
.gr-box:hover {
box-shadow: 0 0 15px rgba(255, 255, 255, 0.3) !important;
}
.gr-button {
background: var(--hot-pink) !important;
border: 2px solid black !important;
color: black !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
.gr-button:hover {
background: var(--dark-pink) !important;
box-shadow: 0 0 15px rgba(255, 255, 255, 0.5);
transform: translateY(-2px);
}
.gr-input, .gr-input-label {
background: var(--hot-pink) !important;
border: 2px solid black !important;
border-radius: 8px !important;
color: black !important;
transition: all 0.3s ease !important;
}
.gr-input::placeholder {
color: rgba(0, 0, 0, 0.6) !important;
}
.gr-input:focus {
box-shadow: 0 0 15px rgba(255, 255, 255, 0.3) !important;
}
.gr-form {
gap: 1.5rem !important;
}
.gr-slider {
accent-color: var(--hot-pink) !important;
}
.gr-slider-value {
color: white !important;
}
.gr-checkbox {
accent-color: var(--hot-pink) !important;
}
.gr-panel {
background: var(--hot-pink) !important;
border: 2px solid black !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2) !important;
}
.gr-accordion {
border: 2px solid black !important;
background: var(--hot-pink) !important;
border-radius: 10px !important;
margin-top: 1.5rem !important;
}
label, .gr-box label, .gr-accordion-title {
color: black !important;
font-weight: 600 !important;
}
.markdown {
color: white !important;
}
.markdown a {
color: var(--hot-pink) !important;
text-decoration: none !important;
transition: color 0.3s ease !important;
}
.markdown a:hover {
color: var(--light-pink) !important;
}
.upload-box {
border: 2px dashed var(--hot-pink) !important;
background: rgba(0, 0, 0, 0.3) !important;
transition: all 0.3s ease !important;
}
.upload-box:hover {
border-color: var(--light-pink) !important;
box-shadow: 0 0 15px rgba(255, 105, 180, 0.2) !important;
}
.generating {
box-shadow: 0 0 20px rgba(255, 255, 255, 0.8) !important;
}
.progress-bar {
background: var(--hot-pink) !important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""# FLUX.1 Depth [dev] with LoRA Support
(note: clone this repo and run on free gpu, this required hf subscription) 12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
lora_path = gr.Textbox(
label="HuggingFace LoRA Path",
placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees",
scale=3
)
load_lora_btn = gr.Button("Load LoRA", scale=1)
unload_lora_btn = gr.Button("Unload LoRA", scale=1)
lora_status = gr.Textbox(label="LoRA Status", interactive=False)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=True,
max_lines=1,
placeholder="Enter your prompt",
container=True,
)
run_button = gr.Button("Run", scale=0)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
control_image = gr.Image(
label="Control Image",
type="pil",
elem_id="image-upload"
)
with gr.Column(scale=1):
result = gr.Image(
label="Generated Result",
elem_id="result-image"
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
with gr.Column(scale=1):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True
)
with gr.Row():
with gr.Column(scale=1):
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Column(scale=1):
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=10,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
load_lora_btn.click(
fn=load_lora,
inputs=[lora_path],
outputs=[lora_status]
)
unload_lora_btn.click(
fn=unload_lora,
inputs=[],
outputs=[lora_status]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch()