File size: 9,914 Bytes
c70f6b6
 
 
 
8c6f026
0cea845
c70f6b6
 
 
 
 
 
67ecd0e
97a48f9
 
 
 
67ecd0e
c70f6b6
 
d071a59
9102b04
 
 
 
97a48f9
 
a436bfa
97a48f9
 
 
 
 
 
 
9102b04
 
 
 
 
d071a59
9102b04
 
97a48f9
9102b04
 
 
 
 
1d15b14
9102b04
 
97a48f9
 
 
 
16eb805
97a48f9
 
bc71736
16eb805
 
c70f6b6
97a48f9
 
 
 
 
 
 
 
 
 
16eb805
 
 
 
c70f6b6
67ecd0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70f6b6
ce51ffe
67ecd0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70f6b6
 
 
 
 
67ecd0e
066d603
ce51ffe
 
 
 
 
 
67ecd0e
 
ce51ffe
67ecd0e
 
c70f6b6
ce51ffe
 
 
 
 
67ecd0e
ce51ffe
 
67ecd0e
c70f6b6
ce51ffe
67ecd0e
 
 
 
 
 
 
 
 
 
 
 
 
ce51ffe
4b87e8e
 
67ecd0e
 
 
 
 
 
 
 
 
 
 
 
c70f6b6
 
67ecd0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70f6b6
9102b04
 
 
 
 
 
 
 
 
 
 
 
c70f6b6
 
9102b04
 
 
c70f6b6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import gradio as gr
import numpy as np
import spaces
import torch
import random
from peft import PeftModel
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from image_gen_aux import DepthPreprocessor

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Initialize models without moving to CUDA yet - following working version
pipe = FluxControlPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Depth-dev", 
    torch_dtype=torch.bfloat16
)
pipe.enable_attention_slicing()  # Keep this as it's helpful
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")

@spaces.GPU
def load_lora(lora_path):
    if not lora_path.strip():
        return "Please provide a valid LoRA path"
    try:
        # Move to GPU within the wrapped function
        pipe.to("cuda")
        
        # Unload any existing LoRA weights first
        try:
            pipe.unload_lora_weights()
        except:
            pass
            
        # Load new LoRA weights
        pipe.load_lora_weights(lora_path)
        return f"Successfully loaded LoRA weights from {lora_path}"
    except Exception as e:
        return f"Error loading LoRA weights: {str(e)}"

@spaces.GPU
def unload_lora():
    try:
        pipe.to("cuda")
        pipe.unload_lora_weights()
        return "Successfully unloaded LoRA weights"
    except Exception as e:
        return f"Error unloading LoRA weights: {str(e)}"

@spaces.GPU
def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024, 
          guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    try:
        # Move pipeline to GPU within the wrapped function
        pipe.to("cuda")
        
        # Process control image
        control_image = processor(control_image)[0].convert("RGB")
        
        # Generate image
        image = pipe(
            prompt=prompt,
            control_image=control_image,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            generator=torch.Generator("cuda").manual_seed(seed),
        ).images[0]
        
        return image, seed
    except Exception as e:
        return None, f"Error during inference: {str(e)}"

css = """
@keyframes gradientMove {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}
body {
    background: black !important;
    margin: 0;
    min-height: 100vh;
}
body::before {
    content: '';
    position: fixed;
    top: 0;
    left: 0;
    right: 0;
    bottom: 0;
    z-index: -1;
    background: 
        linear-gradient(125deg, rgba(255,105,180,0.3), rgba(0,0,0,0.5)),
        url('data:image/svg+xml,<svg viewBox="0 0 200 200" xmlns="http://www.w3.org/2000/svg"><filter id="noise"><feTurbulence type="fractalNoise" baseFrequency="0.005" numOctaves="3" /><feColorMatrix type="saturate" values="0"/></filter><rect width="100%" height="100%" filter="url(%23noise)"/></svg>');
    filter: blur(70px);
    animation: gradientMove 15s ease infinite;
    background-size: 400% 400%;
    opacity: 0.8;
}
:root {
    --hot-pink: #FF69B4;
    --light-pink: #FFB6C6;
    --dark-pink: #FF1493;
}
#col-container {
    margin: 0 auto;
    max-width: 1200px;
    padding: 2rem;
    background: rgba(0, 0, 0, 0.85);
    border-radius: 15px;
    box-shadow: 0 0 20px rgba(255, 105, 180, 0.3);
    border: 2px solid var(--hot-pink);
    position: relative;
    z-index: 1;
}
.gr-box {
    background: var(--hot-pink) !important;
    border: 2px solid black !important;
    border-radius: 8px !important;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2) !important;
    transition: all 0.3s ease !important;
}
.gr-box:hover {
    box-shadow: 0 0 15px rgba(255, 255, 255, 0.3) !important;
}
.gr-button {
    background: var(--hot-pink) !important;
    border: 2px solid black !important;
    color: black !important;
    font-weight: 600 !important;
    transition: all 0.3s ease !important;
}
.gr-button:hover {
    background: var(--dark-pink) !important;
    box-shadow: 0 0 15px rgba(255, 255, 255, 0.5);
    transform: translateY(-2px);
}
.gr-input, .gr-input-label {
    background: var(--hot-pink) !important;
    border: 2px solid black !important;
    border-radius: 8px !important;
    color: black !important;
    transition: all 0.3s ease !important;
}
.gr-input::placeholder {
    color: rgba(0, 0, 0, 0.6) !important;
}
.gr-input:focus {
    box-shadow: 0 0 15px rgba(255, 255, 255, 0.3) !important;
}
.gr-form {
    gap: 1.5rem !important;
}
.gr-slider {
    accent-color: var(--hot-pink) !important;
}
.gr-slider-value {
    color: white !important;
}
.gr-checkbox {
    accent-color: var(--hot-pink) !important;
}
.gr-panel {
    background: var(--hot-pink) !important;
    border: 2px solid black !important;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2) !important;
}
.gr-accordion {
    border: 2px solid black !important;
    background: var(--hot-pink) !important;
    border-radius: 10px !important;
    margin-top: 1.5rem !important;
}
label, .gr-box label, .gr-accordion-title {
    color: black !important;
    font-weight: 600 !important;
}
.markdown {
    color: white !important;
}
.markdown a {
    color: var(--hot-pink) !important;
    text-decoration: none !important;
    transition: color 0.3s ease !important;
}
.markdown a:hover {
    color: var(--light-pink) !important;
}
.upload-box {
    border: 2px dashed var(--hot-pink) !important;
    background: rgba(0, 0, 0, 0.3) !important;
    transition: all 0.3s ease !important;
}
.upload-box:hover {
    border-color: var(--light-pink) !important;
    box-shadow: 0 0 15px rgba(255, 105, 180, 0.2) !important;
}
.generating {
    box-shadow: 0 0 20px rgba(255, 255, 255, 0.8) !important;
}
.progress-bar {
    background: var(--hot-pink) !important;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""# FLUX.1 Depth [dev] with LoRA Support
(note: clone this repo and run on free gpu, this required hf subscription) 12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)

        with gr.Row():
            lora_path = gr.Textbox(
                label="HuggingFace LoRA Path",
                placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees",
                scale=3
            )
            load_lora_btn = gr.Button("Load LoRA", scale=1)
            unload_lora_btn = gr.Button("Unload LoRA", scale=1)
        
        lora_status = gr.Textbox(label="LoRA Status", interactive=False)

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=True,
                max_lines=1,
                placeholder="Enter your prompt",
                container=True,
            )
            run_button = gr.Button("Run", scale=0)

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                control_image = gr.Image(
                    label="Control Image",
                    type="pil",
                    elem_id="image-upload"
                )
            with gr.Column(scale=1):
                result = gr.Image(
                    label="Generated Result",
                    elem_id="result-image"
                )
        
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                with gr.Column(scale=1):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    randomize_seed = gr.Checkbox(
                        label="Randomize seed",
                        value=True
                    )
            
            with gr.Row():
                with gr.Column(scale=1):
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                with gr.Column(scale=1):
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1,
                        maximum=30,
                        step=0.5,
                        value=10,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=28,
                    )

    load_lora_btn.click(
        fn=load_lora,
        inputs=[lora_path],
        outputs=[lora_status]
    )
    
    unload_lora_btn.click(
        fn=unload_lora,
        inputs=[],
        outputs=[lora_status]
    )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.launch()