File size: 9,914 Bytes
c70f6b6 8c6f026 0cea845 c70f6b6 67ecd0e 97a48f9 67ecd0e c70f6b6 d071a59 9102b04 97a48f9 a436bfa 97a48f9 9102b04 d071a59 9102b04 97a48f9 9102b04 1d15b14 9102b04 97a48f9 16eb805 97a48f9 bc71736 16eb805 c70f6b6 97a48f9 16eb805 c70f6b6 67ecd0e c70f6b6 ce51ffe 67ecd0e c70f6b6 67ecd0e 066d603 ce51ffe 67ecd0e ce51ffe 67ecd0e c70f6b6 ce51ffe 67ecd0e ce51ffe 67ecd0e c70f6b6 ce51ffe 67ecd0e ce51ffe 4b87e8e 67ecd0e c70f6b6 67ecd0e c70f6b6 9102b04 c70f6b6 9102b04 c70f6b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
from peft import PeftModel
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from image_gen_aux import DepthPreprocessor
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Initialize models without moving to CUDA yet - following working version
pipe = FluxControlPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16
)
pipe.enable_attention_slicing() # Keep this as it's helpful
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
@spaces.GPU
def load_lora(lora_path):
if not lora_path.strip():
return "Please provide a valid LoRA path"
try:
# Move to GPU within the wrapped function
pipe.to("cuda")
# Unload any existing LoRA weights first
try:
pipe.unload_lora_weights()
except:
pass
# Load new LoRA weights
pipe.load_lora_weights(lora_path)
return f"Successfully loaded LoRA weights from {lora_path}"
except Exception as e:
return f"Error loading LoRA weights: {str(e)}"
@spaces.GPU
def unload_lora():
try:
pipe.to("cuda")
pipe.unload_lora_weights()
return "Successfully unloaded LoRA weights"
except Exception as e:
return f"Error unloading LoRA weights: {str(e)}"
@spaces.GPU
def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024,
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
try:
# Move pipeline to GPU within the wrapped function
pipe.to("cuda")
# Process control image
control_image = processor(control_image)[0].convert("RGB")
# Generate image
image = pipe(
prompt=prompt,
control_image=control_image,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator("cuda").manual_seed(seed),
).images[0]
return image, seed
except Exception as e:
return None, f"Error during inference: {str(e)}"
css = """
@keyframes gradientMove {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
body {
background: black !important;
margin: 0;
min-height: 100vh;
}
body::before {
content: '';
position: fixed;
top: 0;
left: 0;
right: 0;
bottom: 0;
z-index: -1;
background:
linear-gradient(125deg, rgba(255,105,180,0.3), rgba(0,0,0,0.5)),
url('data:image/svg+xml,<svg viewBox="0 0 200 200" xmlns="http://www.w3.org/2000/svg"><filter id="noise"><feTurbulence type="fractalNoise" baseFrequency="0.005" numOctaves="3" /><feColorMatrix type="saturate" values="0"/></filter><rect width="100%" height="100%" filter="url(%23noise)"/></svg>');
filter: blur(70px);
animation: gradientMove 15s ease infinite;
background-size: 400% 400%;
opacity: 0.8;
}
:root {
--hot-pink: #FF69B4;
--light-pink: #FFB6C6;
--dark-pink: #FF1493;
}
#col-container {
margin: 0 auto;
max-width: 1200px;
padding: 2rem;
background: rgba(0, 0, 0, 0.85);
border-radius: 15px;
box-shadow: 0 0 20px rgba(255, 105, 180, 0.3);
border: 2px solid var(--hot-pink);
position: relative;
z-index: 1;
}
.gr-box {
background: var(--hot-pink) !important;
border: 2px solid black !important;
border-radius: 8px !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2) !important;
transition: all 0.3s ease !important;
}
.gr-box:hover {
box-shadow: 0 0 15px rgba(255, 255, 255, 0.3) !important;
}
.gr-button {
background: var(--hot-pink) !important;
border: 2px solid black !important;
color: black !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
.gr-button:hover {
background: var(--dark-pink) !important;
box-shadow: 0 0 15px rgba(255, 255, 255, 0.5);
transform: translateY(-2px);
}
.gr-input, .gr-input-label {
background: var(--hot-pink) !important;
border: 2px solid black !important;
border-radius: 8px !important;
color: black !important;
transition: all 0.3s ease !important;
}
.gr-input::placeholder {
color: rgba(0, 0, 0, 0.6) !important;
}
.gr-input:focus {
box-shadow: 0 0 15px rgba(255, 255, 255, 0.3) !important;
}
.gr-form {
gap: 1.5rem !important;
}
.gr-slider {
accent-color: var(--hot-pink) !important;
}
.gr-slider-value {
color: white !important;
}
.gr-checkbox {
accent-color: var(--hot-pink) !important;
}
.gr-panel {
background: var(--hot-pink) !important;
border: 2px solid black !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2) !important;
}
.gr-accordion {
border: 2px solid black !important;
background: var(--hot-pink) !important;
border-radius: 10px !important;
margin-top: 1.5rem !important;
}
label, .gr-box label, .gr-accordion-title {
color: black !important;
font-weight: 600 !important;
}
.markdown {
color: white !important;
}
.markdown a {
color: var(--hot-pink) !important;
text-decoration: none !important;
transition: color 0.3s ease !important;
}
.markdown a:hover {
color: var(--light-pink) !important;
}
.upload-box {
border: 2px dashed var(--hot-pink) !important;
background: rgba(0, 0, 0, 0.3) !important;
transition: all 0.3s ease !important;
}
.upload-box:hover {
border-color: var(--light-pink) !important;
box-shadow: 0 0 15px rgba(255, 105, 180, 0.2) !important;
}
.generating {
box-shadow: 0 0 20px rgba(255, 255, 255, 0.8) !important;
}
.progress-bar {
background: var(--hot-pink) !important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""# FLUX.1 Depth [dev] with LoRA Support
(note: clone this repo and run on free gpu, this required hf subscription) 12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
lora_path = gr.Textbox(
label="HuggingFace LoRA Path",
placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees",
scale=3
)
load_lora_btn = gr.Button("Load LoRA", scale=1)
unload_lora_btn = gr.Button("Unload LoRA", scale=1)
lora_status = gr.Textbox(label="LoRA Status", interactive=False)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=True,
max_lines=1,
placeholder="Enter your prompt",
container=True,
)
run_button = gr.Button("Run", scale=0)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
control_image = gr.Image(
label="Control Image",
type="pil",
elem_id="image-upload"
)
with gr.Column(scale=1):
result = gr.Image(
label="Generated Result",
elem_id="result-image"
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
with gr.Column(scale=1):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True
)
with gr.Row():
with gr.Column(scale=1):
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Column(scale=1):
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=10,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
load_lora_btn.click(
fn=load_lora,
inputs=[lora_path],
outputs=[lora_status]
)
unload_lora_btn.click(
fn=unload_lora,
inputs=[],
outputs=[lora_status]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch() |