Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import numpy as np
|
|
3 |
import spaces
|
4 |
import torch
|
5 |
import random
|
6 |
-
import gc
|
7 |
from peft import PeftModel
|
8 |
from diffusers import FluxControlPipeline, FluxTransformer2DModel
|
9 |
from image_gen_aux import DepthPreprocessor
|
@@ -11,107 +10,69 @@ from image_gen_aux import DepthPreprocessor
|
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
12 |
MAX_IMAGE_SIZE = 2048
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
low_cpu_mem_usage=True,
|
20 |
-
use_safetensors=True
|
21 |
-
)
|
22 |
-
return pipe
|
23 |
-
|
24 |
-
# Initialize models without moving to CUDA
|
25 |
-
pipe = init_pipeline()
|
26 |
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
27 |
|
28 |
-
def cleanup_memory():
|
29 |
-
"""Aggressive memory cleanup"""
|
30 |
-
if torch.cuda.is_available():
|
31 |
-
with torch.cuda.device('cuda'):
|
32 |
-
torch.cuda.empty_cache()
|
33 |
-
torch.cuda.ipc_collect()
|
34 |
-
gc.collect()
|
35 |
-
|
36 |
-
def reinit_pipeline():
|
37 |
-
"""Reinitialize the pipeline if needed"""
|
38 |
-
global pipe
|
39 |
-
cleanup_memory()
|
40 |
-
pipe = init_pipeline()
|
41 |
-
cleanup_memory()
|
42 |
-
|
43 |
@spaces.GPU
|
44 |
def load_lora(lora_path):
|
45 |
-
global pipe
|
46 |
if not lora_path.strip():
|
47 |
return "Please provide a valid LoRA path"
|
48 |
try:
|
49 |
-
|
|
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
# Load LoRA weights
|
58 |
pipe.load_lora_weights(lora_path)
|
59 |
-
|
60 |
-
cleanup_memory()
|
61 |
return f"Successfully loaded LoRA weights from {lora_path}"
|
62 |
except Exception as e:
|
63 |
-
cleanup_memory()
|
64 |
return f"Error loading LoRA weights: {str(e)}"
|
65 |
|
66 |
@spaces.GPU
|
67 |
def unload_lora():
|
68 |
-
global pipe
|
69 |
try:
|
70 |
-
|
71 |
-
reinit_pipeline()
|
72 |
-
pipe.enable_sequential_cpu_offload()
|
73 |
pipe.unload_lora_weights()
|
74 |
-
cleanup_memory()
|
75 |
return "Successfully unloaded LoRA weights"
|
76 |
except Exception as e:
|
77 |
-
cleanup_memory()
|
78 |
return f"Error unloading LoRA weights: {str(e)}"
|
79 |
|
80 |
-
def round_to_multiple(number, multiple):
|
81 |
-
return multiple * round(number / multiple)
|
82 |
-
|
83 |
@spaces.GPU
|
84 |
def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024,
|
85 |
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
86 |
try:
|
87 |
-
|
88 |
-
|
89 |
-
if randomize_seed:
|
90 |
-
seed = random.randint(0, MAX_SEED)
|
91 |
-
|
92 |
-
# Ensure dimensions are divisible by 16
|
93 |
-
width = round_to_multiple(width, 16)
|
94 |
-
height = round_to_multiple(height, 16)
|
95 |
|
96 |
# Process control image
|
97 |
control_image = processor(control_image)[0].convert("RGB")
|
98 |
|
99 |
-
# Generate image
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
).images[0]
|
110 |
|
111 |
-
cleanup_memory()
|
112 |
return image, seed
|
113 |
except Exception as e:
|
114 |
-
cleanup_memory()
|
115 |
return None, f"Error during inference: {str(e)}"
|
116 |
|
117 |
css="""
|
@@ -122,6 +83,7 @@ css="""
|
|
122 |
"""
|
123 |
|
124 |
with gr.Blocks(css=css) as demo:
|
|
|
125 |
with gr.Column(elem_id="col-container"):
|
126 |
gr.Markdown(f"""# FLUX.1 Depth [dev] with LoRA Support
|
127 |
12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
@@ -169,7 +131,7 @@ with gr.Blocks(css=css) as demo:
|
|
169 |
label="Width",
|
170 |
minimum=256,
|
171 |
maximum=MAX_IMAGE_SIZE,
|
172 |
-
step=
|
173 |
value=1024,
|
174 |
)
|
175 |
|
@@ -177,7 +139,7 @@ with gr.Blocks(css=css) as demo:
|
|
177 |
label="Height",
|
178 |
minimum=256,
|
179 |
maximum=MAX_IMAGE_SIZE,
|
180 |
-
step=
|
181 |
value=1024,
|
182 |
)
|
183 |
|
|
|
3 |
import spaces
|
4 |
import torch
|
5 |
import random
|
|
|
6 |
from peft import PeftModel
|
7 |
from diffusers import FluxControlPipeline, FluxTransformer2DModel
|
8 |
from image_gen_aux import DepthPreprocessor
|
|
|
10 |
MAX_SEED = np.iinfo(np.int32).max
|
11 |
MAX_IMAGE_SIZE = 2048
|
12 |
|
13 |
+
# Initialize models without moving to CUDA yet
|
14 |
+
pipe = FluxControlPipeline.from_pretrained(
|
15 |
+
"black-forest-labs/FLUX.1-Depth-dev",
|
16 |
+
torch_dtype=torch.bfloat16
|
17 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
@spaces.GPU
|
21 |
def load_lora(lora_path):
|
|
|
22 |
if not lora_path.strip():
|
23 |
return "Please provide a valid LoRA path"
|
24 |
try:
|
25 |
+
# Move to GPU within the wrapped function
|
26 |
+
pipe.to("cuda")
|
27 |
|
28 |
+
# Unload any existing LoRA weights first
|
29 |
+
try:
|
30 |
+
pipe.unload_lora_weights()
|
31 |
+
except:
|
32 |
+
pass
|
33 |
+
|
34 |
+
# Load new LoRA weights
|
35 |
pipe.load_lora_weights(lora_path)
|
|
|
|
|
36 |
return f"Successfully loaded LoRA weights from {lora_path}"
|
37 |
except Exception as e:
|
|
|
38 |
return f"Error loading LoRA weights: {str(e)}"
|
39 |
|
40 |
@spaces.GPU
|
41 |
def unload_lora():
|
|
|
42 |
try:
|
43 |
+
pipe.to("cuda")
|
|
|
|
|
44 |
pipe.unload_lora_weights()
|
|
|
45 |
return "Successfully unloaded LoRA weights"
|
46 |
except Exception as e:
|
|
|
47 |
return f"Error unloading LoRA weights: {str(e)}"
|
48 |
|
|
|
|
|
|
|
49 |
@spaces.GPU
|
50 |
def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024,
|
51 |
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
52 |
+
|
53 |
+
if randomize_seed:
|
54 |
+
seed = random.randint(0, MAX_SEED)
|
55 |
+
|
56 |
try:
|
57 |
+
# Move pipeline to GPU within the wrapped function
|
58 |
+
pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Process control image
|
61 |
control_image = processor(control_image)[0].convert("RGB")
|
62 |
|
63 |
+
# Generate image
|
64 |
+
image = pipe(
|
65 |
+
prompt=prompt,
|
66 |
+
control_image=control_image,
|
67 |
+
height=height,
|
68 |
+
width=width,
|
69 |
+
num_inference_steps=num_inference_steps,
|
70 |
+
guidance_scale=guidance_scale,
|
71 |
+
generator=torch.Generator("cuda").manual_seed(seed),
|
72 |
+
).images[0]
|
|
|
73 |
|
|
|
74 |
return image, seed
|
75 |
except Exception as e:
|
|
|
76 |
return None, f"Error during inference: {str(e)}"
|
77 |
|
78 |
css="""
|
|
|
83 |
"""
|
84 |
|
85 |
with gr.Blocks(css=css) as demo:
|
86 |
+
|
87 |
with gr.Column(elem_id="col-container"):
|
88 |
gr.Markdown(f"""# FLUX.1 Depth [dev] with LoRA Support
|
89 |
12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
|
|
131 |
label="Width",
|
132 |
minimum=256,
|
133 |
maximum=MAX_IMAGE_SIZE,
|
134 |
+
step=32,
|
135 |
value=1024,
|
136 |
)
|
137 |
|
|
|
139 |
label="Height",
|
140 |
minimum=256,
|
141 |
maximum=MAX_IMAGE_SIZE,
|
142 |
+
step=32,
|
143 |
value=1024,
|
144 |
)
|
145 |
|