Spaces:
Paused
Paused
| import gradio as gr | |
| from rvc_infer import download_online_model | |
| import os | |
| import re | |
| import random | |
| from scipy.io.wavfile import write | |
| from scipy.io.wavfile import read | |
| import numpy as np | |
| import yt_dlp | |
| import subprocess | |
| def download_model(url, dir_name): | |
| output_models = download_online_model(url, dir_name) | |
| return dir_name | |
| uvr_models = { | |
| 'BS-Roformer-Viperx-1297.ckpt': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt', | |
| 'MDX23C-8KFFT-InstVoc_HQ.ckpt': 'MDX23C-8KFFT-InstVoc_HQ.ckpt', | |
| 'BS-Roformer-Viperx-1053.ckpt': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt', | |
| 'Mel-Roformer-Viperx-1143.ckpt': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt', | |
| 'Kim_Vocal_2.onnx': 'Kim_Vocal_2.onnx', | |
| 'UVR-De-Echo-Aggressive.pth': 'UVR-De-Echo-Aggressive.pth', | |
| } | |
| output_format = [ | |
| 'wav', | |
| 'flac', | |
| 'mp3', | |
| ] | |
| mdxnet_overlap_values = [ | |
| '0.25', | |
| '0.5', | |
| '0.75', | |
| '0.99', | |
| ] | |
| vrarch_window_size_values = [ | |
| '320', | |
| '512', | |
| '1024', | |
| ] | |
| def download_audio(url): | |
| ydl_opts = { | |
| 'format': 'bestaudio/best', | |
| 'outtmpl': 'ytdl/%(title)s.%(ext)s', | |
| 'postprocessors': [{ | |
| 'key': 'FFmpegExtractAudio', | |
| 'preferredcodec': 'wav', | |
| 'preferredquality': '192', | |
| }], | |
| } | |
| with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
| info_dict = ydl.extract_info(url, download=True) | |
| file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav' | |
| sample_rate, audio_data = read(file_path) | |
| audio_array = np.asarray(audio_data, dtype=np.int16) | |
| return sample_rate, audio_array | |
| def roformer_separator(roformer_audio, roformer_model, roformer_output_format, roformer_overlap, roformer_segment_size, mdx23c_denoise, mdxnet_denoise, vrarch_tta, vrarch_high_end_process): | |
| files_list = [] | |
| files_list.clear() | |
| directory = "./outputs" | |
| random_id = str(random.randint(10000, 99999)) | |
| pattern = f"{random_id}" | |
| os.makedirs("outputs", exist_ok=True) | |
| write(f'{random_id}.wav', roformer_audio[0], roformer_audio[1]) | |
| full_roformer_model = roformer_models[roformer_model] | |
| prompt = f"audio-separator {random_id}.wav --model_filename {full_roformer_model} --output_dir=./outputs --output_format={roformer_output_format} --normalization=0.9 --mdxc_overlap={roformer_overlap} --mdxc_segment_size={roformer_segment_size}" | |
| if mdx23c_denoise: | |
| prompt += " --mdx_enable_denoise" | |
| if mdxnet_denoise: | |
| prompt += " --mdx_enable_denoise" | |
| if vrarch_tta: | |
| prompt += " --vr_enable_tta" | |
| if vrarch_high_end_process: | |
| prompt += " --vr_high_end_process" | |
| os.system(prompt) | |
| for file in os.listdir(directory): | |
| if re.search(pattern, file): | |
| files_list.append(os.path.join(directory, file)) | |
| stem1_file = files_list[0] | |
| stem2_file = files_list[1] | |
| return stem1_file, stem2_file | |
| CSS = """ | |
| """ | |
| with gr.Blocks(theme="Hev832/Applio", fill_width=True, css=CSS) as demo: | |
| with gr.Tabs(): | |
| with gr.Tab("inferenece"): | |
| gr.Markdown("in progress") | |
| with gr.Tab("Download model"): | |
| gr.Markdown("## Download Model for infernece") | |
| url_input = gr.Textbox(label="Model URL", placeholder="Enter the URL of the model") | |
| dir_name_input = gr.Textbox(label="Directory Name", placeholder="Enter the directory name") | |
| download_button = gr.Button("Download Model") | |
| download_button.click(download_model, inputs=[url_input, dir_name_input], outputs=url_input) | |
| with gr.Tab("UVR5"): | |
| roformer_model = gr.Dropdown( | |
| label = "Select the Model", | |
| choices=list(uvr_models.keys()), | |
| interactive = True | |
| ) | |
| roformer_output_format = gr.Dropdown( | |
| label = "Select the Output Format", | |
| choices = output_format, | |
| interactive = True | |
| ) | |
| roformer_overlap = gr.Slider( | |
| minimum = 2, | |
| maximum = 4, | |
| step = 1, | |
| label = "Overlap", | |
| info = "Amount of overlap between prediction windows.", | |
| value = 4, | |
| interactive = True | |
| ) | |
| roformer_segment_size = gr.Slider( | |
| minimum = 32, | |
| maximum = 4000, | |
| step = 32, | |
| label = "Segment Size", | |
| info = "Larger consumes more resources, but may give better results.", | |
| value = 256, | |
| interactive = True | |
| ) | |
| mdx23c_denoise = gr.Checkbox( | |
| label = "Denoise", | |
| info = "Enable denoising during separation.", | |
| value = False, | |
| interactive = True | |
| ) | |
| with gr.Tab(" Credits"): | |
| gr.Markdown( | |
| """ | |
| this project made by [Blane187](https://huggingface.co/Blane187) with Improvements by [John6666](https://huggingfce.co/John6666) | |
| """) | |
| demo.launch(debug=True,show_api=False) | |