File size: 5,106 Bytes
fe54a29
 
f7a6ff9
 
 
 
 
 
 
 
 
 
 
fe54a29
 
 
548f1ce
fe54a29
 
f7a6ff9
 
 
 
 
d5fcf79
f7a6ff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe54a29
 
 
 
 
53ffbb8
 
 
 
 
 
 
548f1ce
 
af94d8d
45a780c
f7a6ff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67f619
 
 
 
 
31ed23e
 
 
53ffbb8
 
 
 
 
 
 
f7a6ff9
53ffbb8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
from rvc_infer import download_online_model
import os
import re
import random
from scipy.io.wavfile import write
from scipy.io.wavfile import read
import numpy as np
import yt_dlp
import subprocess




def download_model(url, dir_name):
    output_models = download_online_model(url, dir_name)
    return dir_name


uvr_models = {
        'BS-Roformer-Viperx-1297.ckpt': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
        'MDX23C-8KFFT-InstVoc_HQ.ckpt': 'MDX23C-8KFFT-InstVoc_HQ.ckpt',
        'BS-Roformer-Viperx-1053.ckpt': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
        'Mel-Roformer-Viperx-1143.ckpt': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt',
        'Kim_Vocal_2.onnx': 'Kim_Vocal_2.onnx',
        'UVR-De-Echo-Aggressive.pth': 'UVR-De-Echo-Aggressive.pth',
}





output_format = [
    'wav',
    'flac',
    'mp3',
]

mdxnet_overlap_values = [
    '0.25',
    '0.5',
    '0.75',
    '0.99',
]

vrarch_window_size_values = [
    '320',
    '512',
    '1024',
]






def download_audio(url):
    ydl_opts = {
        'format': 'bestaudio/best',
        'outtmpl': 'ytdl/%(title)s.%(ext)s',
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'wav',
            'preferredquality': '192',
        }],
    }

    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        info_dict = ydl.extract_info(url, download=True)
        file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
        sample_rate, audio_data = read(file_path)
        audio_array = np.asarray(audio_data, dtype=np.int16)

        return sample_rate, audio_array

def roformer_separator(roformer_audio, roformer_model, roformer_output_format, roformer_overlap, roformer_segment_size, mdx23c_denoise, mdxnet_denoise, vrarch_tta, vrarch_high_end_process):
  files_list = []
  files_list.clear()
  directory = "./outputs"
  random_id = str(random.randint(10000, 99999))
  pattern = f"{random_id}"
  os.makedirs("outputs", exist_ok=True)
  write(f'{random_id}.wav', roformer_audio[0], roformer_audio[1])
  full_roformer_model = roformer_models[roformer_model]
  prompt = f"audio-separator {random_id}.wav --model_filename {full_roformer_model} --output_dir=./outputs --output_format={roformer_output_format} --normalization=0.9 --mdxc_overlap={roformer_overlap} --mdxc_segment_size={roformer_segment_size}"
    
    if mdx23c_denoise:
        prompt += " --mdx_enable_denoise"
  
    if mdxnet_denoise:
        prompt += " --mdx_enable_denoise"


    if vrarch_tta:
        prompt += " --vr_enable_tta"
    if vrarch_high_end_process:
        prompt += " --vr_high_end_process"

  os.system(prompt)

  for file in os.listdir(directory):
    if re.search(pattern, file):
      files_list.append(os.path.join(directory, file))

  stem1_file = files_list[0]
  stem2_file = files_list[1]

  return stem1_file, stem2_file





CSS = """
"""

with gr.Blocks(theme="Hev832/Applio", fill_width=True, css=CSS) as demo:

    with gr.Tabs():
        with gr.Tab("inferenece"):
            gr.Markdown("in progress")
        with gr.Tab("Download model"):
            gr.Markdown("## Download Model for infernece")
            url_input = gr.Textbox(label="Model URL", placeholder="Enter the URL of the model")
            dir_name_input = gr.Textbox(label="Directory Name", placeholder="Enter the directory name")
         
            download_button = gr.Button("Download Model")
        download_button.click(download_model, inputs=[url_input, dir_name_input], outputs=url_input)

        with gr.Tab("UVR5"):
            roformer_model = gr.Dropdown(
                label = "Select the Model",
                choices=list(uvr_models.keys()),
                interactive = True
            )
            roformer_output_format = gr.Dropdown(
                label = "Select the Output Format",
                choices = output_format,
                interactive = True
            )
            roformer_overlap = gr.Slider(
                minimum = 2,
                maximum = 4,
                step = 1,
                label = "Overlap",
                info = "Amount of overlap between prediction windows.",
                value = 4,
                interactive = True
            )
            roformer_segment_size = gr.Slider(
                minimum = 32,
                maximum = 4000,
                step = 32,
                label = "Segment Size",
                info = "Larger consumes more resources, but may give better results.",
                value = 256,
                interactive = True
            )
            mdx23c_denoise = gr.Checkbox(
                label = "Denoise",
                info = "Enable denoising during separation.",
                value = False,
                interactive = True
            )
        with gr.Tab(" Credits"):
            gr.Markdown(
                """
                this project made by [Blane187](https://huggingface.co/Blane187) with Improvements by [John6666](https://huggingfce.co/John6666)
                """)











demo.launch(debug=True,show_api=False)