Spaces:
Sleeping
Sleeping
File size: 23,262 Bytes
69a5239 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
# BioGPT Medical Chatbot with Gradio Interface - FIXED VERSION
import gradio as gr
import torch
import warnings
import numpy as np
import faiss
import os
import re
import time
from datetime import datetime
from typing import List, Dict, Optional, Tuple
import json
# Install required packages if not already installed
try:
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer
except ImportError:
print("Installing required packages...")
import subprocess
import sys
packages = [
"transformers>=4.21.0",
"torch>=1.12.0",
"sentence-transformers",
"faiss-cpu",
"accelerate",
"bitsandbytes",
"datasets",
"numpy",
"sacremoses"
]
for package in packages:
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer
# Suppress warnings
warnings.filterwarnings('ignore')
class GradioBioGPTChatbot:
def __init__(self, use_gpu=True, use_8bit=True):
"""Initialize BioGPT chatbot for Gradio deployment"""
self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
self.use_8bit = use_8bit and torch.cuda.is_available()
# Initialize components
self.setup_embeddings()
self.setup_faiss_index()
self.setup_biogpt()
# Conversation tracking
self.conversation_history = []
self.knowledge_chunks = []
self.is_data_loaded = False
def setup_embeddings(self):
"""Setup medical-optimized embeddings"""
try:
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
self.use_embeddings = True
except Exception as e:
print(f"Embeddings setup failed: {e}")
self.embedding_model = None
self.embedding_dim = 384
self.use_embeddings = False
def setup_faiss_index(self):
"""Setup FAISS for vector search"""
try:
self.faiss_index = faiss.IndexFlatIP(self.embedding_dim)
self.faiss_ready = True
except Exception as e:
print(f"FAISS setup failed: {e}")
self.faiss_index = None
self.faiss_ready = False
def setup_biogpt(self):
"""Setup BioGPT model with optimizations"""
model_name = "microsoft/BioGPT-Large"
try:
# Setup quantization config for memory efficiency
if self.use_8bit:
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
else:
quantization_config = None
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Load model
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto" if self.device == "cuda" else None,
trust_remote_code=True
)
if self.device == "cuda" and quantization_config is None:
self.model = self.model.to(self.device)
except Exception as e:
print(f"BioGPT loading failed: {e}. Using fallback model...")
self.setup_fallback_model()
def setup_fallback_model(self):
"""Setup fallback model if BioGPT fails"""
try:
fallback_model = "microsoft/DialoGPT-medium"
self.tokenizer = AutoTokenizer.from_pretrained(fallback_model)
self.model = AutoModelForCausalLM.from_pretrained(fallback_model)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if self.device == "cuda":
self.model = self.model.to(self.device)
except Exception as e:
print(f"All models failed: {e}")
self.model = None
self.tokenizer = None
def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]:
"""Create medically-optimized text chunks"""
chunks = []
# Split by medical sections first
medical_sections = self.split_by_medical_sections(text)
chunk_id = 0
for section in medical_sections:
if len(section.split()) > chunk_size:
# Split large sections by sentences
sentences = re.split(r'[.!?]+', section)
current_chunk = ""
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
if len(current_chunk.split()) + len(sentence.split()) < chunk_size:
current_chunk += sentence + ". "
else:
if current_chunk.strip():
chunks.append({
'id': chunk_id,
'text': current_chunk.strip(),
'medical_focus': self.identify_medical_focus(current_chunk)
})
chunk_id += 1
current_chunk = sentence + ". "
if current_chunk.strip():
chunks.append({
'id': chunk_id,
'text': current_chunk.strip(),
'medical_focus': self.identify_medical_focus(current_chunk)
})
chunk_id += 1
else:
chunks.append({
'id': chunk_id,
'text': section,
'medical_focus': self.identify_medical_focus(section)
})
chunk_id += 1
return chunks
def split_by_medical_sections(self, text: str) -> List[str]:
"""Split text by medical sections"""
section_patterns = [
r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n',
r'\n\s*\d+\.\s+',
r'\n\n+'
]
sections = [text]
for pattern in section_patterns:
new_sections = []
for section in sections:
splits = re.split(pattern, section, flags=re.IGNORECASE)
new_sections.extend([s.strip() for s in splits if len(s.strip()) > 100])
sections = new_sections
return sections
def identify_medical_focus(self, text: str) -> str:
"""Identify the medical focus of a text chunk"""
text_lower = text.lower()
categories = {
'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'],
'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'],
'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'],
'emergency': ['emergency', 'urgent', 'serious', 'hospital'],
'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
}
for category, keywords in categories.items():
if any(keyword in text_lower for keyword in keywords):
return category
return 'general_medical'
def load_medical_data_from_file(self, file_path: str) -> Tuple[str, bool]:
"""Load medical data from uploaded file"""
if not file_path or not os.path.exists(file_path):
return "β No file uploaded or file not found.", False
try:
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
# Create chunks
chunks = self.create_medical_chunks(text)
self.knowledge_chunks = chunks
# Generate embeddings if available
if self.use_embeddings and self.embedding_model and self.faiss_ready:
success = self.generate_embeddings_and_index(chunks)
if success:
self.is_data_loaded = True
return f"β
Medical data loaded successfully! {len(chunks)} chunks processed with vector search.", True
self.is_data_loaded = True
return f"β
Medical data loaded successfully! {len(chunks)} chunks processed (keyword search mode).", True
except Exception as e:
return f"β Error loading file: {str(e)}", False
def generate_embeddings_and_index(self, chunks: List[Dict]) -> bool:
"""Generate embeddings and add to FAISS index"""
try:
texts = [chunk['text'] for chunk in chunks]
embeddings = self.embedding_model.encode(texts, show_progress_bar=False)
self.faiss_index.add(np.array(embeddings))
return True
except Exception as e:
print(f"Embedding generation failed: {e}")
return False
def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
"""Retrieve relevant medical context"""
if self.use_embeddings and self.embedding_model and self.faiss_ready:
try:
query_embedding = self.embedding_model.encode([query])
distances, indices = self.faiss_index.search(np.array(query_embedding), n_results)
context_chunks = [self.knowledge_chunks[i]['text'] for i in indices[0] if i != -1]
if context_chunks:
return context_chunks
except Exception as e:
print(f"Embedding search failed: {e}")
# Fallback to keyword search
return self.keyword_search_medical(query, n_results)
def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
"""Medical-focused keyword search"""
if not self.knowledge_chunks:
return []
query_words = set(query.lower().split())
chunk_scores = []
for chunk_info in self.knowledge_chunks:
chunk_text = chunk_info['text']
chunk_words = set(chunk_text.lower().split())
word_overlap = len(query_words.intersection(chunk_words))
base_score = word_overlap / len(query_words) if query_words else 0
# Boost medical content
medical_boost = 0
if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
medical_boost = 0.5
final_score = base_score + medical_boost
if final_score > 0:
chunk_scores.append((final_score, chunk_text))
chunk_scores.sort(reverse=True)
return [chunk for _, chunk in chunk_scores[:n_results]]
def generate_biogpt_response(self, context: str, query: str) -> str:
"""Generate medical response using BioGPT"""
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup."
try:
prompt = f"""Medical Context: {context[:800]}
Question: {query}
Medical Answer:"""
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=1024
)
if self.device == "cuda":
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=self.tokenizer.eos_token_id,
repetition_penalty=1.1
)
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
if "Medical Answer:" in full_response:
generated_response = full_response.split("Medical Answer:")[-1].strip()
else:
generated_response = full_response[len(prompt):].strip()
return self.clean_medical_response(generated_response)
except Exception as e:
print(f"BioGPT generation failed: {e}")
return self.fallback_response(context, query)
def clean_medical_response(self, response: str) -> str:
"""Clean and format medical response"""
sentences = re.split(r'[.!?]+', response)
clean_sentences = []
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 10 and not sentence.endswith(('and', 'or', 'but', 'however')):
clean_sentences.append(sentence)
if len(clean_sentences) >= 3:
break
if clean_sentences:
cleaned = '. '.join(clean_sentences) + '.'
else:
cleaned = response[:200] + '...' if len(response) > 200 else response
return cleaned
def fallback_response(self, context: str, query: str) -> str:
"""Fallback response when BioGPT fails"""
sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
if sentences:
response = sentences[0] + '.'
if len(sentences) > 1:
response += ' ' + sentences[1] + '.'
else:
response = context[:300] + '...'
return response
def handle_conversational_interactions(self, query: str) -> Optional[str]:
"""Handle conversational interactions"""
query_lower = query.lower().strip()
# Greetings
if any(greeting in query_lower for greeting in ['hello', 'hi', 'hey', 'good morning', 'good afternoon']):
return "π Hello! I'm BioGPT, your medical AI assistant specialized in pediatric medicine. Please upload your medical data file first, then ask me any health-related questions!"
# Thanks
if any(thanks in query_lower for thanks in ['thank you', 'thanks', 'thx', 'appreciate']):
return "π You're welcome! I'm glad I could help. Remember to always consult healthcare professionals for medical decisions. Feel free to ask more questions!"
# Goodbyes
if any(bye in query_lower for bye in ['bye', 'goodbye', 'see you', 'farewell']):
return "π Goodbye! Take care of yourself and your family. Stay healthy! π₯"
# Help/About
if any(help_word in query_lower for help_word in ['help', 'what can you do', 'how do you work']):
return """π€ **BioGPT Medical Assistant**
I'm an AI medical assistant that can help with:
β’ Pediatric medicine and children's health
β’ Medical symptoms and conditions
β’ Treatment information
β’ When to seek medical care
**How to use:**
1. Upload your medical data file using the file upload above
2. Ask specific medical questions
3. Get evidence-based medical information
β οΈ **Important:** I provide educational information only. Always consult healthcare professionals for medical advice."""
return None
def chat_interface(self, message: str, history: List[List[str]]) -> Tuple[str, List[List[str]]]:
"""Main chat interface for Gradio"""
if not message.strip():
return "", history
# Check if data is loaded
if not self.is_data_loaded:
response = "β οΈ Please upload your medical data file first using the file upload above before asking questions."
history.append([message, response])
return "", history
# Handle conversational interactions
conversational_response = self.handle_conversational_interactions(message)
if conversational_response:
history.append([message, conversational_response])
return "", history
# Process medical query
context = self.retrieve_medical_context(message)
if not context:
response = "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
else:
main_context = '\n\n'.join(context)
medical_response = self.generate_biogpt_response(main_context, message)
response = f"π©Ί **Medical Information:** {medical_response}\n\nβ οΈ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
# Add to conversation history
self.conversation_history.append({
'query': message,
'response': response,
'timestamp': datetime.now().isoformat()
})
history.append([message, response])
return "", history
# Initialize the chatbot
print("π Initializing BioGPT Medical Chatbot...")
chatbot = GradioBioGPTChatbot(use_gpu=True, use_8bit=True)
def upload_and_process_file(file):
"""Handle file upload and processing - FIXED VERSION"""
if file is None:
return "β No file uploaded."
# file is now a file path string, not an object with .name attribute
message, success = chatbot.load_medical_data_from_file(file)
return message
# Create Gradio Interface
def create_gradio_interface():
"""Create and launch Gradio interface"""
with gr.Blocks(
title="π₯ BioGPT Medical Assistant",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.chat-message {
border-radius: 10px !important;
}
"""
) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1>π₯ BioGPT Medical Assistant</h1>
<p style="font-size: 18px; color: #666;">
Professional AI Medical Chatbot powered by BioGPT-Large
</p>
<p style="color: #888;">
β οΈ For educational purposes only. Always consult healthcare professionals for medical advice.
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>π Upload Medical Data</h3>")
# FIXED: Changed type="file" to type="filepath"
file_upload = gr.File(
label="Upload Medical Text File (.txt)",
file_types=[".txt"],
type="filepath" # FIXED: Changed from "file" to "filepath"
)
upload_status = gr.Textbox(
label="Upload Status",
value="π Please upload your medical data file to begin...",
interactive=False,
lines=3
)
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background-color: #f0f8ff; border-radius: 10px;">
<h4>π‘ How to Use:</h4>
<ol>
<li>Upload your medical text file (.txt format)</li>
<li>Wait for processing confirmation</li>
<li>Start asking medical questions!</li>
</ol>
<h4>π Example Questions:</h4>
<ul>
<li>"What causes fever in children?"</li>
<li>"How to treat a persistent cough?"</li>
<li>"When should I call the doctor?"</li>
<li>"Signs of dehydration in infants?"</li>
</ul>
</div>
""")
with gr.Column(scale=2):
gr.HTML("<h3>π¬ Medical Consultation</h3>")
chatbot_interface = gr.Chatbot(
label="BioGPT Medical Chat",
height=500,
bubble_full_width=False
)
msg_input = gr.Textbox(
label="Your Medical Question",
placeholder="Ask me about pediatric health, symptoms, treatments, or when to seek care...",
lines=2
)
with gr.Row():
send_btn = gr.Button("π©Ί Send Question", variant="primary")
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary")
# Event handlers
file_upload.change(
fn=upload_and_process_file,
inputs=[file_upload],
outputs=[upload_status]
)
msg_input.submit(
fn=chatbot.chat_interface,
inputs=[msg_input, chatbot_interface],
outputs=[msg_input, chatbot_interface]
)
send_btn.click(
fn=chatbot.chat_interface,
inputs=[msg_input, chatbot_interface],
outputs=[msg_input, chatbot_interface]
)
clear_btn.click(
fn=lambda: ([], ""),
outputs=[chatbot_interface, msg_input]
)
gr.HTML("""
<div style="text-align: center; margin-top: 30px; padding: 20px; background-color: #fff3cd; border-radius: 10px;">
<h4>β οΈ Medical Disclaimer</h4>
<p>This AI assistant provides educational medical information only and is not a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of qualified healthcare providers with questions about medical conditions.</p>
</div>
""")
return demo
if __name__ == "__main__":
# Create and launch the Gradio interface
demo = create_gradio_interface()
print("π Launching Gradio interface...")
print("π Upload your medical data file and start chatting!")
# For Hugging Face Spaces deployment
demo.launch(
share=False, # Don't need sharing on HF Spaces
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |