Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# BioGPT Medical Chatbot with Gradio Interface - FIXED VERSION
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import warnings
|
6 |
+
import numpy as np
|
7 |
+
import faiss
|
8 |
+
import os
|
9 |
+
import re
|
10 |
+
import time
|
11 |
+
from datetime import datetime
|
12 |
+
from typing import List, Dict, Optional, Tuple
|
13 |
+
import json
|
14 |
+
|
15 |
+
# Install required packages if not already installed
|
16 |
+
try:
|
17 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
18 |
+
from sentence_transformers import SentenceTransformer
|
19 |
+
except ImportError:
|
20 |
+
print("Installing required packages...")
|
21 |
+
import subprocess
|
22 |
+
import sys
|
23 |
+
|
24 |
+
packages = [
|
25 |
+
"transformers>=4.21.0",
|
26 |
+
"torch>=1.12.0",
|
27 |
+
"sentence-transformers",
|
28 |
+
"faiss-cpu",
|
29 |
+
"accelerate",
|
30 |
+
"bitsandbytes",
|
31 |
+
"datasets",
|
32 |
+
"numpy",
|
33 |
+
"sacremoses"
|
34 |
+
]
|
35 |
+
|
36 |
+
for package in packages:
|
37 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
38 |
+
|
39 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
40 |
+
from sentence_transformers import SentenceTransformer
|
41 |
+
|
42 |
+
# Suppress warnings
|
43 |
+
warnings.filterwarnings('ignore')
|
44 |
+
|
45 |
+
class GradioBioGPTChatbot:
|
46 |
+
def __init__(self, use_gpu=True, use_8bit=True):
|
47 |
+
"""Initialize BioGPT chatbot for Gradio deployment"""
|
48 |
+
self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
|
49 |
+
self.use_8bit = use_8bit and torch.cuda.is_available()
|
50 |
+
|
51 |
+
# Initialize components
|
52 |
+
self.setup_embeddings()
|
53 |
+
self.setup_faiss_index()
|
54 |
+
self.setup_biogpt()
|
55 |
+
|
56 |
+
# Conversation tracking
|
57 |
+
self.conversation_history = []
|
58 |
+
self.knowledge_chunks = []
|
59 |
+
self.is_data_loaded = False
|
60 |
+
|
61 |
+
def setup_embeddings(self):
|
62 |
+
"""Setup medical-optimized embeddings"""
|
63 |
+
try:
|
64 |
+
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
65 |
+
self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
|
66 |
+
self.use_embeddings = True
|
67 |
+
except Exception as e:
|
68 |
+
print(f"Embeddings setup failed: {e}")
|
69 |
+
self.embedding_model = None
|
70 |
+
self.embedding_dim = 384
|
71 |
+
self.use_embeddings = False
|
72 |
+
|
73 |
+
def setup_faiss_index(self):
|
74 |
+
"""Setup FAISS for vector search"""
|
75 |
+
try:
|
76 |
+
self.faiss_index = faiss.IndexFlatIP(self.embedding_dim)
|
77 |
+
self.faiss_ready = True
|
78 |
+
except Exception as e:
|
79 |
+
print(f"FAISS setup failed: {e}")
|
80 |
+
self.faiss_index = None
|
81 |
+
self.faiss_ready = False
|
82 |
+
|
83 |
+
def setup_biogpt(self):
|
84 |
+
"""Setup BioGPT model with optimizations"""
|
85 |
+
model_name = "microsoft/BioGPT-Large"
|
86 |
+
|
87 |
+
try:
|
88 |
+
# Setup quantization config for memory efficiency
|
89 |
+
if self.use_8bit:
|
90 |
+
quantization_config = BitsAndBytesConfig(
|
91 |
+
load_in_8bit=True,
|
92 |
+
llm_int8_threshold=6.0,
|
93 |
+
llm_int8_has_fp16_weight=False,
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
quantization_config = None
|
97 |
+
|
98 |
+
# Load tokenizer
|
99 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
100 |
+
if self.tokenizer.pad_token is None:
|
101 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
102 |
+
|
103 |
+
# Load model
|
104 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
105 |
+
model_name,
|
106 |
+
quantization_config=quantization_config,
|
107 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
108 |
+
device_map="auto" if self.device == "cuda" else None,
|
109 |
+
trust_remote_code=True
|
110 |
+
)
|
111 |
+
|
112 |
+
if self.device == "cuda" and quantization_config is None:
|
113 |
+
self.model = self.model.to(self.device)
|
114 |
+
|
115 |
+
except Exception as e:
|
116 |
+
print(f"BioGPT loading failed: {e}. Using fallback model...")
|
117 |
+
self.setup_fallback_model()
|
118 |
+
|
119 |
+
def setup_fallback_model(self):
|
120 |
+
"""Setup fallback model if BioGPT fails"""
|
121 |
+
try:
|
122 |
+
fallback_model = "microsoft/DialoGPT-medium"
|
123 |
+
self.tokenizer = AutoTokenizer.from_pretrained(fallback_model)
|
124 |
+
self.model = AutoModelForCausalLM.from_pretrained(fallback_model)
|
125 |
+
|
126 |
+
if self.tokenizer.pad_token is None:
|
127 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
128 |
+
|
129 |
+
if self.device == "cuda":
|
130 |
+
self.model = self.model.to(self.device)
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
print(f"All models failed: {e}")
|
134 |
+
self.model = None
|
135 |
+
self.tokenizer = None
|
136 |
+
|
137 |
+
def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]:
|
138 |
+
"""Create medically-optimized text chunks"""
|
139 |
+
chunks = []
|
140 |
+
|
141 |
+
# Split by medical sections first
|
142 |
+
medical_sections = self.split_by_medical_sections(text)
|
143 |
+
|
144 |
+
chunk_id = 0
|
145 |
+
for section in medical_sections:
|
146 |
+
if len(section.split()) > chunk_size:
|
147 |
+
# Split large sections by sentences
|
148 |
+
sentences = re.split(r'[.!?]+', section)
|
149 |
+
current_chunk = ""
|
150 |
+
|
151 |
+
for sentence in sentences:
|
152 |
+
sentence = sentence.strip()
|
153 |
+
if not sentence:
|
154 |
+
continue
|
155 |
+
|
156 |
+
if len(current_chunk.split()) + len(sentence.split()) < chunk_size:
|
157 |
+
current_chunk += sentence + ". "
|
158 |
+
else:
|
159 |
+
if current_chunk.strip():
|
160 |
+
chunks.append({
|
161 |
+
'id': chunk_id,
|
162 |
+
'text': current_chunk.strip(),
|
163 |
+
'medical_focus': self.identify_medical_focus(current_chunk)
|
164 |
+
})
|
165 |
+
chunk_id += 1
|
166 |
+
current_chunk = sentence + ". "
|
167 |
+
|
168 |
+
if current_chunk.strip():
|
169 |
+
chunks.append({
|
170 |
+
'id': chunk_id,
|
171 |
+
'text': current_chunk.strip(),
|
172 |
+
'medical_focus': self.identify_medical_focus(current_chunk)
|
173 |
+
})
|
174 |
+
chunk_id += 1
|
175 |
+
else:
|
176 |
+
chunks.append({
|
177 |
+
'id': chunk_id,
|
178 |
+
'text': section,
|
179 |
+
'medical_focus': self.identify_medical_focus(section)
|
180 |
+
})
|
181 |
+
chunk_id += 1
|
182 |
+
|
183 |
+
return chunks
|
184 |
+
|
185 |
+
def split_by_medical_sections(self, text: str) -> List[str]:
|
186 |
+
"""Split text by medical sections"""
|
187 |
+
section_patterns = [
|
188 |
+
r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n',
|
189 |
+
r'\n\s*\d+\.\s+',
|
190 |
+
r'\n\n+'
|
191 |
+
]
|
192 |
+
|
193 |
+
sections = [text]
|
194 |
+
for pattern in section_patterns:
|
195 |
+
new_sections = []
|
196 |
+
for section in sections:
|
197 |
+
splits = re.split(pattern, section, flags=re.IGNORECASE)
|
198 |
+
new_sections.extend([s.strip() for s in splits if len(s.strip()) > 100])
|
199 |
+
sections = new_sections
|
200 |
+
|
201 |
+
return sections
|
202 |
+
|
203 |
+
def identify_medical_focus(self, text: str) -> str:
|
204 |
+
"""Identify the medical focus of a text chunk"""
|
205 |
+
text_lower = text.lower()
|
206 |
+
|
207 |
+
categories = {
|
208 |
+
'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'],
|
209 |
+
'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'],
|
210 |
+
'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'],
|
211 |
+
'emergency': ['emergency', 'urgent', 'serious', 'hospital'],
|
212 |
+
'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
|
213 |
+
}
|
214 |
+
|
215 |
+
for category, keywords in categories.items():
|
216 |
+
if any(keyword in text_lower for keyword in keywords):
|
217 |
+
return category
|
218 |
+
|
219 |
+
return 'general_medical'
|
220 |
+
|
221 |
+
def load_medical_data_from_file(self, file_path: str) -> Tuple[str, bool]:
|
222 |
+
"""Load medical data from uploaded file"""
|
223 |
+
if not file_path or not os.path.exists(file_path):
|
224 |
+
return "β No file uploaded or file not found.", False
|
225 |
+
|
226 |
+
try:
|
227 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
228 |
+
text = f.read()
|
229 |
+
|
230 |
+
# Create chunks
|
231 |
+
chunks = self.create_medical_chunks(text)
|
232 |
+
self.knowledge_chunks = chunks
|
233 |
+
|
234 |
+
# Generate embeddings if available
|
235 |
+
if self.use_embeddings and self.embedding_model and self.faiss_ready:
|
236 |
+
success = self.generate_embeddings_and_index(chunks)
|
237 |
+
if success:
|
238 |
+
self.is_data_loaded = True
|
239 |
+
return f"β
Medical data loaded successfully! {len(chunks)} chunks processed with vector search.", True
|
240 |
+
|
241 |
+
self.is_data_loaded = True
|
242 |
+
return f"β
Medical data loaded successfully! {len(chunks)} chunks processed (keyword search mode).", True
|
243 |
+
|
244 |
+
except Exception as e:
|
245 |
+
return f"β Error loading file: {str(e)}", False
|
246 |
+
|
247 |
+
def generate_embeddings_and_index(self, chunks: List[Dict]) -> bool:
|
248 |
+
"""Generate embeddings and add to FAISS index"""
|
249 |
+
try:
|
250 |
+
texts = [chunk['text'] for chunk in chunks]
|
251 |
+
embeddings = self.embedding_model.encode(texts, show_progress_bar=False)
|
252 |
+
self.faiss_index.add(np.array(embeddings))
|
253 |
+
return True
|
254 |
+
except Exception as e:
|
255 |
+
print(f"Embedding generation failed: {e}")
|
256 |
+
return False
|
257 |
+
|
258 |
+
def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
|
259 |
+
"""Retrieve relevant medical context"""
|
260 |
+
if self.use_embeddings and self.embedding_model and self.faiss_ready:
|
261 |
+
try:
|
262 |
+
query_embedding = self.embedding_model.encode([query])
|
263 |
+
distances, indices = self.faiss_index.search(np.array(query_embedding), n_results)
|
264 |
+
context_chunks = [self.knowledge_chunks[i]['text'] for i in indices[0] if i != -1]
|
265 |
+
if context_chunks:
|
266 |
+
return context_chunks
|
267 |
+
except Exception as e:
|
268 |
+
print(f"Embedding search failed: {e}")
|
269 |
+
|
270 |
+
# Fallback to keyword search
|
271 |
+
return self.keyword_search_medical(query, n_results)
|
272 |
+
|
273 |
+
def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
|
274 |
+
"""Medical-focused keyword search"""
|
275 |
+
if not self.knowledge_chunks:
|
276 |
+
return []
|
277 |
+
|
278 |
+
query_words = set(query.lower().split())
|
279 |
+
chunk_scores = []
|
280 |
+
|
281 |
+
for chunk_info in self.knowledge_chunks:
|
282 |
+
chunk_text = chunk_info['text']
|
283 |
+
chunk_words = set(chunk_text.lower().split())
|
284 |
+
|
285 |
+
word_overlap = len(query_words.intersection(chunk_words))
|
286 |
+
base_score = word_overlap / len(query_words) if query_words else 0
|
287 |
+
|
288 |
+
# Boost medical content
|
289 |
+
medical_boost = 0
|
290 |
+
if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
|
291 |
+
medical_boost = 0.5
|
292 |
+
|
293 |
+
final_score = base_score + medical_boost
|
294 |
+
|
295 |
+
if final_score > 0:
|
296 |
+
chunk_scores.append((final_score, chunk_text))
|
297 |
+
|
298 |
+
chunk_scores.sort(reverse=True)
|
299 |
+
return [chunk for _, chunk in chunk_scores[:n_results]]
|
300 |
+
|
301 |
+
def generate_biogpt_response(self, context: str, query: str) -> str:
|
302 |
+
"""Generate medical response using BioGPT"""
|
303 |
+
if not self.model or not self.tokenizer:
|
304 |
+
return "Medical model not available. Please check the setup."
|
305 |
+
|
306 |
+
try:
|
307 |
+
prompt = f"""Medical Context: {context[:800]}
|
308 |
+
|
309 |
+
Question: {query}
|
310 |
+
|
311 |
+
Medical Answer:"""
|
312 |
+
|
313 |
+
inputs = self.tokenizer(
|
314 |
+
prompt,
|
315 |
+
return_tensors="pt",
|
316 |
+
truncation=True,
|
317 |
+
max_length=1024
|
318 |
+
)
|
319 |
+
|
320 |
+
if self.device == "cuda":
|
321 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
322 |
+
|
323 |
+
with torch.no_grad():
|
324 |
+
outputs = self.model.generate(
|
325 |
+
**inputs,
|
326 |
+
max_new_tokens=150,
|
327 |
+
do_sample=True,
|
328 |
+
temperature=0.7,
|
329 |
+
top_p=0.9,
|
330 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
331 |
+
repetition_penalty=1.1
|
332 |
+
)
|
333 |
+
|
334 |
+
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
335 |
+
|
336 |
+
if "Medical Answer:" in full_response:
|
337 |
+
generated_response = full_response.split("Medical Answer:")[-1].strip()
|
338 |
+
else:
|
339 |
+
generated_response = full_response[len(prompt):].strip()
|
340 |
+
|
341 |
+
return self.clean_medical_response(generated_response)
|
342 |
+
|
343 |
+
except Exception as e:
|
344 |
+
print(f"BioGPT generation failed: {e}")
|
345 |
+
return self.fallback_response(context, query)
|
346 |
+
|
347 |
+
def clean_medical_response(self, response: str) -> str:
|
348 |
+
"""Clean and format medical response"""
|
349 |
+
sentences = re.split(r'[.!?]+', response)
|
350 |
+
clean_sentences = []
|
351 |
+
|
352 |
+
for sentence in sentences:
|
353 |
+
sentence = sentence.strip()
|
354 |
+
if len(sentence) > 10 and not sentence.endswith(('and', 'or', 'but', 'however')):
|
355 |
+
clean_sentences.append(sentence)
|
356 |
+
if len(clean_sentences) >= 3:
|
357 |
+
break
|
358 |
+
|
359 |
+
if clean_sentences:
|
360 |
+
cleaned = '. '.join(clean_sentences) + '.'
|
361 |
+
else:
|
362 |
+
cleaned = response[:200] + '...' if len(response) > 200 else response
|
363 |
+
|
364 |
+
return cleaned
|
365 |
+
|
366 |
+
def fallback_response(self, context: str, query: str) -> str:
|
367 |
+
"""Fallback response when BioGPT fails"""
|
368 |
+
sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
|
369 |
+
|
370 |
+
if sentences:
|
371 |
+
response = sentences[0] + '.'
|
372 |
+
if len(sentences) > 1:
|
373 |
+
response += ' ' + sentences[1] + '.'
|
374 |
+
else:
|
375 |
+
response = context[:300] + '...'
|
376 |
+
|
377 |
+
return response
|
378 |
+
|
379 |
+
def handle_conversational_interactions(self, query: str) -> Optional[str]:
|
380 |
+
"""Handle conversational interactions"""
|
381 |
+
query_lower = query.lower().strip()
|
382 |
+
|
383 |
+
# Greetings
|
384 |
+
if any(greeting in query_lower for greeting in ['hello', 'hi', 'hey', 'good morning', 'good afternoon']):
|
385 |
+
return "π Hello! I'm BioGPT, your medical AI assistant specialized in pediatric medicine. Please upload your medical data file first, then ask me any health-related questions!"
|
386 |
+
|
387 |
+
# Thanks
|
388 |
+
if any(thanks in query_lower for thanks in ['thank you', 'thanks', 'thx', 'appreciate']):
|
389 |
+
return "π You're welcome! I'm glad I could help. Remember to always consult healthcare professionals for medical decisions. Feel free to ask more questions!"
|
390 |
+
|
391 |
+
# Goodbyes
|
392 |
+
if any(bye in query_lower for bye in ['bye', 'goodbye', 'see you', 'farewell']):
|
393 |
+
return "π Goodbye! Take care of yourself and your family. Stay healthy! π₯"
|
394 |
+
|
395 |
+
# Help/About
|
396 |
+
if any(help_word in query_lower for help_word in ['help', 'what can you do', 'how do you work']):
|
397 |
+
return """π€ **BioGPT Medical Assistant**
|
398 |
+
|
399 |
+
I'm an AI medical assistant that can help with:
|
400 |
+
β’ Pediatric medicine and children's health
|
401 |
+
β’ Medical symptoms and conditions
|
402 |
+
β’ Treatment information
|
403 |
+
β’ When to seek medical care
|
404 |
+
|
405 |
+
**How to use:**
|
406 |
+
1. Upload your medical data file using the file upload above
|
407 |
+
2. Ask specific medical questions
|
408 |
+
3. Get evidence-based medical information
|
409 |
+
|
410 |
+
β οΈ **Important:** I provide educational information only. Always consult healthcare professionals for medical advice."""
|
411 |
+
|
412 |
+
return None
|
413 |
+
|
414 |
+
def chat_interface(self, message: str, history: List[List[str]]) -> Tuple[str, List[List[str]]]:
|
415 |
+
"""Main chat interface for Gradio"""
|
416 |
+
if not message.strip():
|
417 |
+
return "", history
|
418 |
+
|
419 |
+
# Check if data is loaded
|
420 |
+
if not self.is_data_loaded:
|
421 |
+
response = "β οΈ Please upload your medical data file first using the file upload above before asking questions."
|
422 |
+
history.append([message, response])
|
423 |
+
return "", history
|
424 |
+
|
425 |
+
# Handle conversational interactions
|
426 |
+
conversational_response = self.handle_conversational_interactions(message)
|
427 |
+
if conversational_response:
|
428 |
+
history.append([message, conversational_response])
|
429 |
+
return "", history
|
430 |
+
|
431 |
+
# Process medical query
|
432 |
+
context = self.retrieve_medical_context(message)
|
433 |
+
|
434 |
+
if not context:
|
435 |
+
response = "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
|
436 |
+
else:
|
437 |
+
main_context = '\n\n'.join(context)
|
438 |
+
medical_response = self.generate_biogpt_response(main_context, message)
|
439 |
+
response = f"π©Ί **Medical Information:** {medical_response}\n\nβ οΈ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
|
440 |
+
|
441 |
+
# Add to conversation history
|
442 |
+
self.conversation_history.append({
|
443 |
+
'query': message,
|
444 |
+
'response': response,
|
445 |
+
'timestamp': datetime.now().isoformat()
|
446 |
+
})
|
447 |
+
|
448 |
+
history.append([message, response])
|
449 |
+
return "", history
|
450 |
+
|
451 |
+
# Initialize the chatbot
|
452 |
+
print("π Initializing BioGPT Medical Chatbot...")
|
453 |
+
chatbot = GradioBioGPTChatbot(use_gpu=True, use_8bit=True)
|
454 |
+
|
455 |
+
def upload_and_process_file(file):
|
456 |
+
"""Handle file upload and processing - FIXED VERSION"""
|
457 |
+
if file is None:
|
458 |
+
return "β No file uploaded."
|
459 |
+
|
460 |
+
# file is now a file path string, not an object with .name attribute
|
461 |
+
message, success = chatbot.load_medical_data_from_file(file)
|
462 |
+
return message
|
463 |
+
|
464 |
+
# Create Gradio Interface
|
465 |
+
def create_gradio_interface():
|
466 |
+
"""Create and launch Gradio interface"""
|
467 |
+
|
468 |
+
with gr.Blocks(
|
469 |
+
title="π₯ BioGPT Medical Assistant",
|
470 |
+
theme=gr.themes.Soft(),
|
471 |
+
css="""
|
472 |
+
.gradio-container {
|
473 |
+
max-width: 1200px !important;
|
474 |
+
}
|
475 |
+
.chat-message {
|
476 |
+
border-radius: 10px !important;
|
477 |
+
}
|
478 |
+
"""
|
479 |
+
) as demo:
|
480 |
+
|
481 |
+
gr.HTML("""
|
482 |
+
<div style="text-align: center; padding: 20px;">
|
483 |
+
<h1>π₯ BioGPT Medical Assistant</h1>
|
484 |
+
<p style="font-size: 18px; color: #666;">
|
485 |
+
Professional AI Medical Chatbot powered by BioGPT-Large
|
486 |
+
</p>
|
487 |
+
<p style="color: #888;">
|
488 |
+
β οΈ For educational purposes only. Always consult healthcare professionals for medical advice.
|
489 |
+
</p>
|
490 |
+
</div>
|
491 |
+
""")
|
492 |
+
|
493 |
+
with gr.Row():
|
494 |
+
with gr.Column(scale=1):
|
495 |
+
gr.HTML("<h3>π Upload Medical Data</h3>")
|
496 |
+
# FIXED: Changed type="file" to type="filepath"
|
497 |
+
file_upload = gr.File(
|
498 |
+
label="Upload Medical Text File (.txt)",
|
499 |
+
file_types=[".txt"],
|
500 |
+
type="filepath" # FIXED: Changed from "file" to "filepath"
|
501 |
+
)
|
502 |
+
upload_status = gr.Textbox(
|
503 |
+
label="Upload Status",
|
504 |
+
value="π Please upload your medical data file to begin...",
|
505 |
+
interactive=False,
|
506 |
+
lines=3
|
507 |
+
)
|
508 |
+
|
509 |
+
gr.HTML("""
|
510 |
+
<div style="margin-top: 20px; padding: 15px; background-color: #f0f8ff; border-radius: 10px;">
|
511 |
+
<h4>π‘ How to Use:</h4>
|
512 |
+
<ol>
|
513 |
+
<li>Upload your medical text file (.txt format)</li>
|
514 |
+
<li>Wait for processing confirmation</li>
|
515 |
+
<li>Start asking medical questions!</li>
|
516 |
+
</ol>
|
517 |
+
|
518 |
+
<h4>π Example Questions:</h4>
|
519 |
+
<ul>
|
520 |
+
<li>"What causes fever in children?"</li>
|
521 |
+
<li>"How to treat a persistent cough?"</li>
|
522 |
+
<li>"When should I call the doctor?"</li>
|
523 |
+
<li>"Signs of dehydration in infants?"</li>
|
524 |
+
</ul>
|
525 |
+
</div>
|
526 |
+
""")
|
527 |
+
|
528 |
+
with gr.Column(scale=2):
|
529 |
+
gr.HTML("<h3>π¬ Medical Consultation</h3>")
|
530 |
+
chatbot_interface = gr.Chatbot(
|
531 |
+
label="BioGPT Medical Chat",
|
532 |
+
height=500,
|
533 |
+
bubble_full_width=False
|
534 |
+
)
|
535 |
+
|
536 |
+
msg_input = gr.Textbox(
|
537 |
+
label="Your Medical Question",
|
538 |
+
placeholder="Ask me about pediatric health, symptoms, treatments, or when to seek care...",
|
539 |
+
lines=2
|
540 |
+
)
|
541 |
+
|
542 |
+
with gr.Row():
|
543 |
+
send_btn = gr.Button("π©Ί Send Question", variant="primary")
|
544 |
+
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary")
|
545 |
+
|
546 |
+
# Event handlers
|
547 |
+
file_upload.change(
|
548 |
+
fn=upload_and_process_file,
|
549 |
+
inputs=[file_upload],
|
550 |
+
outputs=[upload_status]
|
551 |
+
)
|
552 |
+
|
553 |
+
msg_input.submit(
|
554 |
+
fn=chatbot.chat_interface,
|
555 |
+
inputs=[msg_input, chatbot_interface],
|
556 |
+
outputs=[msg_input, chatbot_interface]
|
557 |
+
)
|
558 |
+
|
559 |
+
send_btn.click(
|
560 |
+
fn=chatbot.chat_interface,
|
561 |
+
inputs=[msg_input, chatbot_interface],
|
562 |
+
outputs=[msg_input, chatbot_interface]
|
563 |
+
)
|
564 |
+
|
565 |
+
clear_btn.click(
|
566 |
+
fn=lambda: ([], ""),
|
567 |
+
outputs=[chatbot_interface, msg_input]
|
568 |
+
)
|
569 |
+
|
570 |
+
gr.HTML("""
|
571 |
+
<div style="text-align: center; margin-top: 30px; padding: 20px; background-color: #fff3cd; border-radius: 10px;">
|
572 |
+
<h4>β οΈ Medical Disclaimer</h4>
|
573 |
+
<p>This AI assistant provides educational medical information only and is not a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of qualified healthcare providers with questions about medical conditions.</p>
|
574 |
+
</div>
|
575 |
+
""")
|
576 |
+
|
577 |
+
return demo
|
578 |
+
|
579 |
+
if __name__ == "__main__":
|
580 |
+
# Create and launch the Gradio interface
|
581 |
+
demo = create_gradio_interface()
|
582 |
+
|
583 |
+
print("π Launching Gradio interface...")
|
584 |
+
print("π Upload your medical data file and start chatting!")
|
585 |
+
|
586 |
+
# For Hugging Face Spaces deployment
|
587 |
+
demo.launch(
|
588 |
+
share=False, # Don't need sharing on HF Spaces
|
589 |
+
server_name="0.0.0.0",
|
590 |
+
server_port=7860,
|
591 |
+
show_error=True
|
592 |
+
)
|