Blaiseboy commited on
Commit
69a5239
Β·
verified Β·
1 Parent(s): 814c36a

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +592 -0
app.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # BioGPT Medical Chatbot with Gradio Interface - FIXED VERSION
2
+
3
+ import gradio as gr
4
+ import torch
5
+ import warnings
6
+ import numpy as np
7
+ import faiss
8
+ import os
9
+ import re
10
+ import time
11
+ from datetime import datetime
12
+ from typing import List, Dict, Optional, Tuple
13
+ import json
14
+
15
+ # Install required packages if not already installed
16
+ try:
17
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
18
+ from sentence_transformers import SentenceTransformer
19
+ except ImportError:
20
+ print("Installing required packages...")
21
+ import subprocess
22
+ import sys
23
+
24
+ packages = [
25
+ "transformers>=4.21.0",
26
+ "torch>=1.12.0",
27
+ "sentence-transformers",
28
+ "faiss-cpu",
29
+ "accelerate",
30
+ "bitsandbytes",
31
+ "datasets",
32
+ "numpy",
33
+ "sacremoses"
34
+ ]
35
+
36
+ for package in packages:
37
+ subprocess.check_call([sys.executable, "-m", "pip", "install", package])
38
+
39
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
40
+ from sentence_transformers import SentenceTransformer
41
+
42
+ # Suppress warnings
43
+ warnings.filterwarnings('ignore')
44
+
45
+ class GradioBioGPTChatbot:
46
+ def __init__(self, use_gpu=True, use_8bit=True):
47
+ """Initialize BioGPT chatbot for Gradio deployment"""
48
+ self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
49
+ self.use_8bit = use_8bit and torch.cuda.is_available()
50
+
51
+ # Initialize components
52
+ self.setup_embeddings()
53
+ self.setup_faiss_index()
54
+ self.setup_biogpt()
55
+
56
+ # Conversation tracking
57
+ self.conversation_history = []
58
+ self.knowledge_chunks = []
59
+ self.is_data_loaded = False
60
+
61
+ def setup_embeddings(self):
62
+ """Setup medical-optimized embeddings"""
63
+ try:
64
+ self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
65
+ self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
66
+ self.use_embeddings = True
67
+ except Exception as e:
68
+ print(f"Embeddings setup failed: {e}")
69
+ self.embedding_model = None
70
+ self.embedding_dim = 384
71
+ self.use_embeddings = False
72
+
73
+ def setup_faiss_index(self):
74
+ """Setup FAISS for vector search"""
75
+ try:
76
+ self.faiss_index = faiss.IndexFlatIP(self.embedding_dim)
77
+ self.faiss_ready = True
78
+ except Exception as e:
79
+ print(f"FAISS setup failed: {e}")
80
+ self.faiss_index = None
81
+ self.faiss_ready = False
82
+
83
+ def setup_biogpt(self):
84
+ """Setup BioGPT model with optimizations"""
85
+ model_name = "microsoft/BioGPT-Large"
86
+
87
+ try:
88
+ # Setup quantization config for memory efficiency
89
+ if self.use_8bit:
90
+ quantization_config = BitsAndBytesConfig(
91
+ load_in_8bit=True,
92
+ llm_int8_threshold=6.0,
93
+ llm_int8_has_fp16_weight=False,
94
+ )
95
+ else:
96
+ quantization_config = None
97
+
98
+ # Load tokenizer
99
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
100
+ if self.tokenizer.pad_token is None:
101
+ self.tokenizer.pad_token = self.tokenizer.eos_token
102
+
103
+ # Load model
104
+ self.model = AutoModelForCausalLM.from_pretrained(
105
+ model_name,
106
+ quantization_config=quantization_config,
107
+ torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
108
+ device_map="auto" if self.device == "cuda" else None,
109
+ trust_remote_code=True
110
+ )
111
+
112
+ if self.device == "cuda" and quantization_config is None:
113
+ self.model = self.model.to(self.device)
114
+
115
+ except Exception as e:
116
+ print(f"BioGPT loading failed: {e}. Using fallback model...")
117
+ self.setup_fallback_model()
118
+
119
+ def setup_fallback_model(self):
120
+ """Setup fallback model if BioGPT fails"""
121
+ try:
122
+ fallback_model = "microsoft/DialoGPT-medium"
123
+ self.tokenizer = AutoTokenizer.from_pretrained(fallback_model)
124
+ self.model = AutoModelForCausalLM.from_pretrained(fallback_model)
125
+
126
+ if self.tokenizer.pad_token is None:
127
+ self.tokenizer.pad_token = self.tokenizer.eos_token
128
+
129
+ if self.device == "cuda":
130
+ self.model = self.model.to(self.device)
131
+
132
+ except Exception as e:
133
+ print(f"All models failed: {e}")
134
+ self.model = None
135
+ self.tokenizer = None
136
+
137
+ def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]:
138
+ """Create medically-optimized text chunks"""
139
+ chunks = []
140
+
141
+ # Split by medical sections first
142
+ medical_sections = self.split_by_medical_sections(text)
143
+
144
+ chunk_id = 0
145
+ for section in medical_sections:
146
+ if len(section.split()) > chunk_size:
147
+ # Split large sections by sentences
148
+ sentences = re.split(r'[.!?]+', section)
149
+ current_chunk = ""
150
+
151
+ for sentence in sentences:
152
+ sentence = sentence.strip()
153
+ if not sentence:
154
+ continue
155
+
156
+ if len(current_chunk.split()) + len(sentence.split()) < chunk_size:
157
+ current_chunk += sentence + ". "
158
+ else:
159
+ if current_chunk.strip():
160
+ chunks.append({
161
+ 'id': chunk_id,
162
+ 'text': current_chunk.strip(),
163
+ 'medical_focus': self.identify_medical_focus(current_chunk)
164
+ })
165
+ chunk_id += 1
166
+ current_chunk = sentence + ". "
167
+
168
+ if current_chunk.strip():
169
+ chunks.append({
170
+ 'id': chunk_id,
171
+ 'text': current_chunk.strip(),
172
+ 'medical_focus': self.identify_medical_focus(current_chunk)
173
+ })
174
+ chunk_id += 1
175
+ else:
176
+ chunks.append({
177
+ 'id': chunk_id,
178
+ 'text': section,
179
+ 'medical_focus': self.identify_medical_focus(section)
180
+ })
181
+ chunk_id += 1
182
+
183
+ return chunks
184
+
185
+ def split_by_medical_sections(self, text: str) -> List[str]:
186
+ """Split text by medical sections"""
187
+ section_patterns = [
188
+ r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n',
189
+ r'\n\s*\d+\.\s+',
190
+ r'\n\n+'
191
+ ]
192
+
193
+ sections = [text]
194
+ for pattern in section_patterns:
195
+ new_sections = []
196
+ for section in sections:
197
+ splits = re.split(pattern, section, flags=re.IGNORECASE)
198
+ new_sections.extend([s.strip() for s in splits if len(s.strip()) > 100])
199
+ sections = new_sections
200
+
201
+ return sections
202
+
203
+ def identify_medical_focus(self, text: str) -> str:
204
+ """Identify the medical focus of a text chunk"""
205
+ text_lower = text.lower()
206
+
207
+ categories = {
208
+ 'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'],
209
+ 'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'],
210
+ 'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'],
211
+ 'emergency': ['emergency', 'urgent', 'serious', 'hospital'],
212
+ 'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
213
+ }
214
+
215
+ for category, keywords in categories.items():
216
+ if any(keyword in text_lower for keyword in keywords):
217
+ return category
218
+
219
+ return 'general_medical'
220
+
221
+ def load_medical_data_from_file(self, file_path: str) -> Tuple[str, bool]:
222
+ """Load medical data from uploaded file"""
223
+ if not file_path or not os.path.exists(file_path):
224
+ return "❌ No file uploaded or file not found.", False
225
+
226
+ try:
227
+ with open(file_path, 'r', encoding='utf-8') as f:
228
+ text = f.read()
229
+
230
+ # Create chunks
231
+ chunks = self.create_medical_chunks(text)
232
+ self.knowledge_chunks = chunks
233
+
234
+ # Generate embeddings if available
235
+ if self.use_embeddings and self.embedding_model and self.faiss_ready:
236
+ success = self.generate_embeddings_and_index(chunks)
237
+ if success:
238
+ self.is_data_loaded = True
239
+ return f"βœ… Medical data loaded successfully! {len(chunks)} chunks processed with vector search.", True
240
+
241
+ self.is_data_loaded = True
242
+ return f"βœ… Medical data loaded successfully! {len(chunks)} chunks processed (keyword search mode).", True
243
+
244
+ except Exception as e:
245
+ return f"❌ Error loading file: {str(e)}", False
246
+
247
+ def generate_embeddings_and_index(self, chunks: List[Dict]) -> bool:
248
+ """Generate embeddings and add to FAISS index"""
249
+ try:
250
+ texts = [chunk['text'] for chunk in chunks]
251
+ embeddings = self.embedding_model.encode(texts, show_progress_bar=False)
252
+ self.faiss_index.add(np.array(embeddings))
253
+ return True
254
+ except Exception as e:
255
+ print(f"Embedding generation failed: {e}")
256
+ return False
257
+
258
+ def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
259
+ """Retrieve relevant medical context"""
260
+ if self.use_embeddings and self.embedding_model and self.faiss_ready:
261
+ try:
262
+ query_embedding = self.embedding_model.encode([query])
263
+ distances, indices = self.faiss_index.search(np.array(query_embedding), n_results)
264
+ context_chunks = [self.knowledge_chunks[i]['text'] for i in indices[0] if i != -1]
265
+ if context_chunks:
266
+ return context_chunks
267
+ except Exception as e:
268
+ print(f"Embedding search failed: {e}")
269
+
270
+ # Fallback to keyword search
271
+ return self.keyword_search_medical(query, n_results)
272
+
273
+ def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
274
+ """Medical-focused keyword search"""
275
+ if not self.knowledge_chunks:
276
+ return []
277
+
278
+ query_words = set(query.lower().split())
279
+ chunk_scores = []
280
+
281
+ for chunk_info in self.knowledge_chunks:
282
+ chunk_text = chunk_info['text']
283
+ chunk_words = set(chunk_text.lower().split())
284
+
285
+ word_overlap = len(query_words.intersection(chunk_words))
286
+ base_score = word_overlap / len(query_words) if query_words else 0
287
+
288
+ # Boost medical content
289
+ medical_boost = 0
290
+ if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
291
+ medical_boost = 0.5
292
+
293
+ final_score = base_score + medical_boost
294
+
295
+ if final_score > 0:
296
+ chunk_scores.append((final_score, chunk_text))
297
+
298
+ chunk_scores.sort(reverse=True)
299
+ return [chunk for _, chunk in chunk_scores[:n_results]]
300
+
301
+ def generate_biogpt_response(self, context: str, query: str) -> str:
302
+ """Generate medical response using BioGPT"""
303
+ if not self.model or not self.tokenizer:
304
+ return "Medical model not available. Please check the setup."
305
+
306
+ try:
307
+ prompt = f"""Medical Context: {context[:800]}
308
+
309
+ Question: {query}
310
+
311
+ Medical Answer:"""
312
+
313
+ inputs = self.tokenizer(
314
+ prompt,
315
+ return_tensors="pt",
316
+ truncation=True,
317
+ max_length=1024
318
+ )
319
+
320
+ if self.device == "cuda":
321
+ inputs = {k: v.to(self.device) for k, v in inputs.items()}
322
+
323
+ with torch.no_grad():
324
+ outputs = self.model.generate(
325
+ **inputs,
326
+ max_new_tokens=150,
327
+ do_sample=True,
328
+ temperature=0.7,
329
+ top_p=0.9,
330
+ pad_token_id=self.tokenizer.eos_token_id,
331
+ repetition_penalty=1.1
332
+ )
333
+
334
+ full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
335
+
336
+ if "Medical Answer:" in full_response:
337
+ generated_response = full_response.split("Medical Answer:")[-1].strip()
338
+ else:
339
+ generated_response = full_response[len(prompt):].strip()
340
+
341
+ return self.clean_medical_response(generated_response)
342
+
343
+ except Exception as e:
344
+ print(f"BioGPT generation failed: {e}")
345
+ return self.fallback_response(context, query)
346
+
347
+ def clean_medical_response(self, response: str) -> str:
348
+ """Clean and format medical response"""
349
+ sentences = re.split(r'[.!?]+', response)
350
+ clean_sentences = []
351
+
352
+ for sentence in sentences:
353
+ sentence = sentence.strip()
354
+ if len(sentence) > 10 and not sentence.endswith(('and', 'or', 'but', 'however')):
355
+ clean_sentences.append(sentence)
356
+ if len(clean_sentences) >= 3:
357
+ break
358
+
359
+ if clean_sentences:
360
+ cleaned = '. '.join(clean_sentences) + '.'
361
+ else:
362
+ cleaned = response[:200] + '...' if len(response) > 200 else response
363
+
364
+ return cleaned
365
+
366
+ def fallback_response(self, context: str, query: str) -> str:
367
+ """Fallback response when BioGPT fails"""
368
+ sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
369
+
370
+ if sentences:
371
+ response = sentences[0] + '.'
372
+ if len(sentences) > 1:
373
+ response += ' ' + sentences[1] + '.'
374
+ else:
375
+ response = context[:300] + '...'
376
+
377
+ return response
378
+
379
+ def handle_conversational_interactions(self, query: str) -> Optional[str]:
380
+ """Handle conversational interactions"""
381
+ query_lower = query.lower().strip()
382
+
383
+ # Greetings
384
+ if any(greeting in query_lower for greeting in ['hello', 'hi', 'hey', 'good morning', 'good afternoon']):
385
+ return "πŸ‘‹ Hello! I'm BioGPT, your medical AI assistant specialized in pediatric medicine. Please upload your medical data file first, then ask me any health-related questions!"
386
+
387
+ # Thanks
388
+ if any(thanks in query_lower for thanks in ['thank you', 'thanks', 'thx', 'appreciate']):
389
+ return "πŸ™ You're welcome! I'm glad I could help. Remember to always consult healthcare professionals for medical decisions. Feel free to ask more questions!"
390
+
391
+ # Goodbyes
392
+ if any(bye in query_lower for bye in ['bye', 'goodbye', 'see you', 'farewell']):
393
+ return "πŸ‘‹ Goodbye! Take care of yourself and your family. Stay healthy! πŸ₯"
394
+
395
+ # Help/About
396
+ if any(help_word in query_lower for help_word in ['help', 'what can you do', 'how do you work']):
397
+ return """πŸ€– **BioGPT Medical Assistant**
398
+
399
+ I'm an AI medical assistant that can help with:
400
+ β€’ Pediatric medicine and children's health
401
+ β€’ Medical symptoms and conditions
402
+ β€’ Treatment information
403
+ β€’ When to seek medical care
404
+
405
+ **How to use:**
406
+ 1. Upload your medical data file using the file upload above
407
+ 2. Ask specific medical questions
408
+ 3. Get evidence-based medical information
409
+
410
+ ⚠️ **Important:** I provide educational information only. Always consult healthcare professionals for medical advice."""
411
+
412
+ return None
413
+
414
+ def chat_interface(self, message: str, history: List[List[str]]) -> Tuple[str, List[List[str]]]:
415
+ """Main chat interface for Gradio"""
416
+ if not message.strip():
417
+ return "", history
418
+
419
+ # Check if data is loaded
420
+ if not self.is_data_loaded:
421
+ response = "⚠️ Please upload your medical data file first using the file upload above before asking questions."
422
+ history.append([message, response])
423
+ return "", history
424
+
425
+ # Handle conversational interactions
426
+ conversational_response = self.handle_conversational_interactions(message)
427
+ if conversational_response:
428
+ history.append([message, conversational_response])
429
+ return "", history
430
+
431
+ # Process medical query
432
+ context = self.retrieve_medical_context(message)
433
+
434
+ if not context:
435
+ response = "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
436
+ else:
437
+ main_context = '\n\n'.join(context)
438
+ medical_response = self.generate_biogpt_response(main_context, message)
439
+ response = f"🩺 **Medical Information:** {medical_response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
440
+
441
+ # Add to conversation history
442
+ self.conversation_history.append({
443
+ 'query': message,
444
+ 'response': response,
445
+ 'timestamp': datetime.now().isoformat()
446
+ })
447
+
448
+ history.append([message, response])
449
+ return "", history
450
+
451
+ # Initialize the chatbot
452
+ print("πŸš€ Initializing BioGPT Medical Chatbot...")
453
+ chatbot = GradioBioGPTChatbot(use_gpu=True, use_8bit=True)
454
+
455
+ def upload_and_process_file(file):
456
+ """Handle file upload and processing - FIXED VERSION"""
457
+ if file is None:
458
+ return "❌ No file uploaded."
459
+
460
+ # file is now a file path string, not an object with .name attribute
461
+ message, success = chatbot.load_medical_data_from_file(file)
462
+ return message
463
+
464
+ # Create Gradio Interface
465
+ def create_gradio_interface():
466
+ """Create and launch Gradio interface"""
467
+
468
+ with gr.Blocks(
469
+ title="πŸ₯ BioGPT Medical Assistant",
470
+ theme=gr.themes.Soft(),
471
+ css="""
472
+ .gradio-container {
473
+ max-width: 1200px !important;
474
+ }
475
+ .chat-message {
476
+ border-radius: 10px !important;
477
+ }
478
+ """
479
+ ) as demo:
480
+
481
+ gr.HTML("""
482
+ <div style="text-align: center; padding: 20px;">
483
+ <h1>πŸ₯ BioGPT Medical Assistant</h1>
484
+ <p style="font-size: 18px; color: #666;">
485
+ Professional AI Medical Chatbot powered by BioGPT-Large
486
+ </p>
487
+ <p style="color: #888;">
488
+ ⚠️ For educational purposes only. Always consult healthcare professionals for medical advice.
489
+ </p>
490
+ </div>
491
+ """)
492
+
493
+ with gr.Row():
494
+ with gr.Column(scale=1):
495
+ gr.HTML("<h3>πŸ“ Upload Medical Data</h3>")
496
+ # FIXED: Changed type="file" to type="filepath"
497
+ file_upload = gr.File(
498
+ label="Upload Medical Text File (.txt)",
499
+ file_types=[".txt"],
500
+ type="filepath" # FIXED: Changed from "file" to "filepath"
501
+ )
502
+ upload_status = gr.Textbox(
503
+ label="Upload Status",
504
+ value="πŸ“‹ Please upload your medical data file to begin...",
505
+ interactive=False,
506
+ lines=3
507
+ )
508
+
509
+ gr.HTML("""
510
+ <div style="margin-top: 20px; padding: 15px; background-color: #f0f8ff; border-radius: 10px;">
511
+ <h4>πŸ’‘ How to Use:</h4>
512
+ <ol>
513
+ <li>Upload your medical text file (.txt format)</li>
514
+ <li>Wait for processing confirmation</li>
515
+ <li>Start asking medical questions!</li>
516
+ </ol>
517
+
518
+ <h4>πŸ“ Example Questions:</h4>
519
+ <ul>
520
+ <li>"What causes fever in children?"</li>
521
+ <li>"How to treat a persistent cough?"</li>
522
+ <li>"When should I call the doctor?"</li>
523
+ <li>"Signs of dehydration in infants?"</li>
524
+ </ul>
525
+ </div>
526
+ """)
527
+
528
+ with gr.Column(scale=2):
529
+ gr.HTML("<h3>πŸ’¬ Medical Consultation</h3>")
530
+ chatbot_interface = gr.Chatbot(
531
+ label="BioGPT Medical Chat",
532
+ height=500,
533
+ bubble_full_width=False
534
+ )
535
+
536
+ msg_input = gr.Textbox(
537
+ label="Your Medical Question",
538
+ placeholder="Ask me about pediatric health, symptoms, treatments, or when to seek care...",
539
+ lines=2
540
+ )
541
+
542
+ with gr.Row():
543
+ send_btn = gr.Button("🩺 Send Question", variant="primary")
544
+ clear_btn = gr.Button("πŸ—‘οΈ Clear Chat", variant="secondary")
545
+
546
+ # Event handlers
547
+ file_upload.change(
548
+ fn=upload_and_process_file,
549
+ inputs=[file_upload],
550
+ outputs=[upload_status]
551
+ )
552
+
553
+ msg_input.submit(
554
+ fn=chatbot.chat_interface,
555
+ inputs=[msg_input, chatbot_interface],
556
+ outputs=[msg_input, chatbot_interface]
557
+ )
558
+
559
+ send_btn.click(
560
+ fn=chatbot.chat_interface,
561
+ inputs=[msg_input, chatbot_interface],
562
+ outputs=[msg_input, chatbot_interface]
563
+ )
564
+
565
+ clear_btn.click(
566
+ fn=lambda: ([], ""),
567
+ outputs=[chatbot_interface, msg_input]
568
+ )
569
+
570
+ gr.HTML("""
571
+ <div style="text-align: center; margin-top: 30px; padding: 20px; background-color: #fff3cd; border-radius: 10px;">
572
+ <h4>⚠️ Medical Disclaimer</h4>
573
+ <p>This AI assistant provides educational medical information only and is not a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of qualified healthcare providers with questions about medical conditions.</p>
574
+ </div>
575
+ """)
576
+
577
+ return demo
578
+
579
+ if __name__ == "__main__":
580
+ # Create and launch the Gradio interface
581
+ demo = create_gradio_interface()
582
+
583
+ print("🌐 Launching Gradio interface...")
584
+ print("πŸ“‹ Upload your medical data file and start chatting!")
585
+
586
+ # For Hugging Face Spaces deployment
587
+ demo.launch(
588
+ share=False, # Don't need sharing on HF Spaces
589
+ server_name="0.0.0.0",
590
+ server_port=7860,
591
+ show_error=True
592
+ )