import streamlit as st | |
import os | |
import json | |
import pandas as pd | |
from docx import Document | |
from dotenv import load_dotenv | |
from openai import AzureOpenAI | |
# Load environment variables | |
load_dotenv() | |
# Azure OpenAI credentials | |
key = os.getenv("AZURE_OPENAI_API_KEY") | |
print(key) | |
# endpoint_url = "https://interview-key.openai.azure.com/" | |
# api_version = "2024-05-01-preview" | |
# deployment_id = "interview" | |
# # Initialize Azure OpenAI client | |
# client = AzureOpenAI( | |
# api_version=api_version, | |
# azure_endpoint=endpoint_url, | |
# api_key=key | |
# ) | |
# # Streamlit app layout | |
# st.set_page_config(layout="wide") | |
# # Add custom CSS for center alignment | |
# st.markdown(""" | |
# <style> | |
# .centered-title { | |
# text-align: center; | |
# font-size: 2.5em; | |
# margin-top: 0; | |
# } | |
# </style> | |
# """, unsafe_allow_html=True) | |
# def extract_text_from_docx(docx_path): | |
# doc = Document(docx_path) | |
# return "\n".join([para.text for para in doc.paragraphs]) | |
# def extract_terms_from_contract(contract_text): | |
# prompt = ( | |
# "You are an AI tasked with analyzing a contract and extracting key terms and constraints. The contract contains " | |
# "various sections and subsections with terms related to budget constraints, types of allowable work, timelines, " | |
# "penalties, responsibilities, and other conditions for work execution. Your job is to extract these key terms and " | |
# "structure them in a clear JSON format, reflecting the hierarchy of sections and subsections. " | |
# "Ensure to capture all important constraints and conditions specified in the contract text. If a section or subsection " | |
# "contains multiple terms, list them all.\n\n" | |
# "Contract text:\n" | |
# f"{contract_text}\n\n" | |
# "Provide the extracted terms in JSON format." | |
# ) | |
# try: | |
# response = client.chat.completions.create( | |
# model=deployment_id, | |
# messages=[ | |
# {"role": "system", "content": "You are an AI specialized in extracting structured data from text documents."}, | |
# {"role": "user", "content": prompt}, | |
# ], | |
# max_tokens=1250, | |
# n=1, | |
# stop=None, | |
# temperature=0.1, | |
# ) | |
# return response.choices[0].message.content | |
# except Exception as e: | |
# st.error(f"Error extracting terms from contract: {e}") | |
# return None | |
# def analyze_task_compliance(task_description, cost_estimate, contract_terms): | |
# print("Task D: ", task_description, cost_estimate) | |
# prompt = ( | |
# "You are an AI tasked with analyzing a task description and its associated cost estimate for compliance with contract conditions. " | |
# "Below are the key terms and constraints extracted from the contract, followed by a task description and its cost estimate. " | |
# "Your job is to analyze each task description and specify if it violates any conditions from the contract. " | |
# "If there are violations, list the reasons for each violation. Provide detailed answers and do not give only true or false answers.\n\n" | |
# f"Contract terms:\n{json.dumps(contract_terms, indent=4)}\n\n" | |
# f"Task description:\n{task_description}\n" | |
# f"Cost estimate:\n{cost_estimate}\n\n" | |
# "Provide the compliance analysis in a clear JSON format." | |
# ) | |
# try: | |
# response = client.chat.completions.create( | |
# model=deployment_id, | |
# messages=[ | |
# {"role": "system", "content": "You are an AI specialized in analyzing text for compliance with specified conditions."}, | |
# {"role": "user", "content": prompt}, | |
# ], | |
# max_tokens=1250, | |
# n=1, | |
# stop=None, | |
# temperature=0.1, | |
# ) | |
# return json.loads(response.choices[0].message.content) | |
# except Exception as e: | |
# st.error(f"Error analyzing task compliance: {e}") | |
# return None | |
# def main(): | |
# st.markdown("<h1 class='centered-title'>Contract Compliance Analyzer</h1>", unsafe_allow_html=True) | |
# # Initialize session state | |
# if 'contract_terms' not in st.session_state: | |
# st.session_state.contract_terms = None | |
# if 'compliance_results' not in st.session_state: | |
# st.session_state.compliance_results = None | |
# # File upload buttons one after another | |
# docx_file = st.sidebar.file_uploader("Upload Contract Document (DOCX)", type="docx", key="docx_file") | |
# data_file = st.sidebar.file_uploader("Upload Task Descriptions (XLSX or CSV)", type=["xlsx", "csv"], key="data_file") | |
# submit_button = st.sidebar.button("Submit") | |
# if submit_button and docx_file and data_file: | |
# # Extract contract text and terms | |
# contract_text = extract_text_from_docx(docx_file) | |
# extracted_terms_json = extract_terms_from_contract(contract_text) | |
# if extracted_terms_json is None: | |
# return | |
# try: | |
# st.session_state.contract_terms = json.loads(extracted_terms_json) | |
# except json.JSONDecodeError as e: | |
# st.error(f"JSON decoding error: {e}") | |
# return | |
# # Read task descriptions and cost estimates from XLSX or CSV | |
# if data_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": | |
# tasks_df = pd.read_excel(data_file) | |
# else: | |
# tasks_df = pd.read_csv(data_file) | |
# compliance_results = [] | |
# # Process tasks sequentially | |
# for _, row in tasks_df.iterrows(): | |
# result = analyze_task_compliance(row['Task Description'], row['Amount'], st.session_state.contract_terms) | |
# if result is not None: | |
# print(result) | |
# compliance_results.append(result) | |
# st.session_state.compliance_results = compliance_results | |
# col1, col2 = st.columns(2) | |
# with col1: | |
# if st.session_state.contract_terms: | |
# st.write("Extracted Contract Terms:") | |
# st.json(st.session_state.contract_terms) | |
# # Download button for contract terms | |
# st.download_button( | |
# label="Download Contract Terms", | |
# data=json.dumps(st.session_state.contract_terms, indent=4), | |
# file_name="contract_terms.json", | |
# mime="application/json" | |
# ) | |
# with col2: | |
# if st.session_state.compliance_results: | |
# st.write("Compliance Results:") | |
# st.json(st.session_state.compliance_results) | |
# # Download button for compliance results | |
# st.download_button( | |
# label="Download Compliance Results", | |
# data=json.dumps(st.session_state.compliance_results, indent=4), | |
# file_name="compliance_results.json", | |
# mime="application/json" | |
# ) | |
# if __name__ == "__main__": | |
# main() | |