File size: 7,088 Bytes
5fc6a9d e9584dc 5fc6a9d e9584dc 5fc6a9d e9584dc b4435df 9a8fa46 64efe54 9a8fa46 281fa65 9a8fa46 281fa65 9a8fa46 281fa65 9a8fa46 5fc6a9d 9a8fa46 5fc6a9d 9a8fa46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import streamlit as st
import os
import json
import pandas as pd
from docx import Document
from dotenv import load_dotenv
from openai import AzureOpenAI
# Load environment variables
load_dotenv()
# Azure OpenAI credentials
key = os.getenv("AZURE_OPENAI_API_KEY")
print(key)
# endpoint_url = "https://interview-key.openai.azure.com/"
# api_version = "2024-05-01-preview"
# deployment_id = "interview"
# # Initialize Azure OpenAI client
# client = AzureOpenAI(
# api_version=api_version,
# azure_endpoint=endpoint_url,
# api_key=key
# )
# # Streamlit app layout
# st.set_page_config(layout="wide")
# # Add custom CSS for center alignment
# st.markdown("""
# <style>
# .centered-title {
# text-align: center;
# font-size: 2.5em;
# margin-top: 0;
# }
# </style>
# """, unsafe_allow_html=True)
# def extract_text_from_docx(docx_path):
# doc = Document(docx_path)
# return "\n".join([para.text for para in doc.paragraphs])
# def extract_terms_from_contract(contract_text):
# prompt = (
# "You are an AI tasked with analyzing a contract and extracting key terms and constraints. The contract contains "
# "various sections and subsections with terms related to budget constraints, types of allowable work, timelines, "
# "penalties, responsibilities, and other conditions for work execution. Your job is to extract these key terms and "
# "structure them in a clear JSON format, reflecting the hierarchy of sections and subsections. "
# "Ensure to capture all important constraints and conditions specified in the contract text. If a section or subsection "
# "contains multiple terms, list them all.\n\n"
# "Contract text:\n"
# f"{contract_text}\n\n"
# "Provide the extracted terms in JSON format."
# )
# try:
# response = client.chat.completions.create(
# model=deployment_id,
# messages=[
# {"role": "system", "content": "You are an AI specialized in extracting structured data from text documents."},
# {"role": "user", "content": prompt},
# ],
# max_tokens=1250,
# n=1,
# stop=None,
# temperature=0.1,
# )
# return response.choices[0].message.content
# except Exception as e:
# st.error(f"Error extracting terms from contract: {e}")
# return None
# def analyze_task_compliance(task_description, cost_estimate, contract_terms):
# print("Task D: ", task_description, cost_estimate)
# prompt = (
# "You are an AI tasked with analyzing a task description and its associated cost estimate for compliance with contract conditions. "
# "Below are the key terms and constraints extracted from the contract, followed by a task description and its cost estimate. "
# "Your job is to analyze each task description and specify if it violates any conditions from the contract. "
# "If there are violations, list the reasons for each violation. Provide detailed answers and do not give only true or false answers.\n\n"
# f"Contract terms:\n{json.dumps(contract_terms, indent=4)}\n\n"
# f"Task description:\n{task_description}\n"
# f"Cost estimate:\n{cost_estimate}\n\n"
# "Provide the compliance analysis in a clear JSON format."
# )
# try:
# response = client.chat.completions.create(
# model=deployment_id,
# messages=[
# {"role": "system", "content": "You are an AI specialized in analyzing text for compliance with specified conditions."},
# {"role": "user", "content": prompt},
# ],
# max_tokens=1250,
# n=1,
# stop=None,
# temperature=0.1,
# )
# return json.loads(response.choices[0].message.content)
# except Exception as e:
# st.error(f"Error analyzing task compliance: {e}")
# return None
# def main():
# st.markdown("<h1 class='centered-title'>Contract Compliance Analyzer</h1>", unsafe_allow_html=True)
# # Initialize session state
# if 'contract_terms' not in st.session_state:
# st.session_state.contract_terms = None
# if 'compliance_results' not in st.session_state:
# st.session_state.compliance_results = None
# # File upload buttons one after another
# docx_file = st.sidebar.file_uploader("Upload Contract Document (DOCX)", type="docx", key="docx_file")
# data_file = st.sidebar.file_uploader("Upload Task Descriptions (XLSX or CSV)", type=["xlsx", "csv"], key="data_file")
# submit_button = st.sidebar.button("Submit")
# if submit_button and docx_file and data_file:
# # Extract contract text and terms
# contract_text = extract_text_from_docx(docx_file)
# extracted_terms_json = extract_terms_from_contract(contract_text)
# if extracted_terms_json is None:
# return
# try:
# st.session_state.contract_terms = json.loads(extracted_terms_json)
# except json.JSONDecodeError as e:
# st.error(f"JSON decoding error: {e}")
# return
# # Read task descriptions and cost estimates from XLSX or CSV
# if data_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
# tasks_df = pd.read_excel(data_file)
# else:
# tasks_df = pd.read_csv(data_file)
# compliance_results = []
# # Process tasks sequentially
# for _, row in tasks_df.iterrows():
# result = analyze_task_compliance(row['Task Description'], row['Amount'], st.session_state.contract_terms)
# if result is not None:
# print(result)
# compliance_results.append(result)
# st.session_state.compliance_results = compliance_results
# col1, col2 = st.columns(2)
# with col1:
# if st.session_state.contract_terms:
# st.write("Extracted Contract Terms:")
# st.json(st.session_state.contract_terms)
# # Download button for contract terms
# st.download_button(
# label="Download Contract Terms",
# data=json.dumps(st.session_state.contract_terms, indent=4),
# file_name="contract_terms.json",
# mime="application/json"
# )
# with col2:
# if st.session_state.compliance_results:
# st.write("Compliance Results:")
# st.json(st.session_state.compliance_results)
# # Download button for compliance results
# st.download_button(
# label="Download Compliance Results",
# data=json.dumps(st.session_state.compliance_results, indent=4),
# file_name="compliance_results.json",
# mime="application/json"
# )
# if __name__ == "__main__":
# main()
|