File size: 7,088 Bytes
5fc6a9d
 
 
 
 
 
e9584dc
5fc6a9d
e9584dc
5fc6a9d
e9584dc
 
 
b4435df
9a8fa46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64efe54
9a8fa46
 
 
 
 
281fa65
9a8fa46
 
 
 
 
 
 
 
 
 
 
 
 
 
281fa65
9a8fa46
281fa65
9a8fa46
5fc6a9d
9a8fa46
 
 
 
5fc6a9d
9a8fa46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import streamlit as st
import os
import json
import pandas as pd
from docx import Document
from dotenv import load_dotenv
from openai import AzureOpenAI

# Load environment variables
load_dotenv()

# Azure OpenAI credentials
key = os.getenv("AZURE_OPENAI_API_KEY")
print(key)
# endpoint_url = "https://interview-key.openai.azure.com/"
# api_version = "2024-05-01-preview"
# deployment_id = "interview"

# # Initialize Azure OpenAI client
# client = AzureOpenAI(
#     api_version=api_version,
#     azure_endpoint=endpoint_url,
#     api_key=key
# )

# # Streamlit app layout
# st.set_page_config(layout="wide")

# # Add custom CSS for center alignment
# st.markdown("""
#     <style>
#     .centered-title {
#         text-align: center;
#         font-size: 2.5em;
#         margin-top: 0;
#     }
#     </style>
#     """, unsafe_allow_html=True)

# def extract_text_from_docx(docx_path):
#     doc = Document(docx_path)
#     return "\n".join([para.text for para in doc.paragraphs])

# def extract_terms_from_contract(contract_text):
#     prompt = (
#         "You are an AI tasked with analyzing a contract and extracting key terms and constraints. The contract contains "
#         "various sections and subsections with terms related to budget constraints, types of allowable work, timelines, "
#         "penalties, responsibilities, and other conditions for work execution. Your job is to extract these key terms and "
#         "structure them in a clear JSON format, reflecting the hierarchy of sections and subsections. "
#         "Ensure to capture all important constraints and conditions specified in the contract text. If a section or subsection "
#         "contains multiple terms, list them all.\n\n"
#         "Contract text:\n"
#         f"{contract_text}\n\n"
#         "Provide the extracted terms in JSON format."
#     )

#     try:
#         response = client.chat.completions.create(
#             model=deployment_id,
#             messages=[
#                 {"role": "system", "content": "You are an AI specialized in extracting structured data from text documents."},
#                 {"role": "user", "content": prompt},
#             ],
#             max_tokens=1250,
#             n=1,
#             stop=None,
#             temperature=0.1,
#         )
#         return response.choices[0].message.content
#     except Exception as e:
#         st.error(f"Error extracting terms from contract: {e}")
#         return None

# def analyze_task_compliance(task_description, cost_estimate, contract_terms):
#     print("Task D: ", task_description, cost_estimate)
#     prompt = (
#         "You are an AI tasked with analyzing a task description and its associated cost estimate for compliance with contract conditions. "
#         "Below are the key terms and constraints extracted from the contract, followed by a task description and its cost estimate. "
#         "Your job is to analyze each task description and specify if it violates any conditions from the contract. "
#         "If there are violations, list the reasons for each violation. Provide detailed answers and do not give only true or false answers.\n\n"
#         f"Contract terms:\n{json.dumps(contract_terms, indent=4)}\n\n"
#         f"Task description:\n{task_description}\n"
#         f"Cost estimate:\n{cost_estimate}\n\n"
#         "Provide the compliance analysis in a clear JSON format."
#     )

#     try:
#         response = client.chat.completions.create(
#             model=deployment_id,
#             messages=[
#                 {"role": "system", "content": "You are an AI specialized in analyzing text for compliance with specified conditions."},
#                 {"role": "user", "content": prompt},
#             ],
#             max_tokens=1250,
#             n=1,
#             stop=None,
#             temperature=0.1,
#         )
#         return json.loads(response.choices[0].message.content)
#     except Exception as e:
#         st.error(f"Error analyzing task compliance: {e}")
#         return None

# def main():
#     st.markdown("<h1 class='centered-title'>Contract Compliance Analyzer</h1>", unsafe_allow_html=True)

#     # Initialize session state
#     if 'contract_terms' not in st.session_state:
#         st.session_state.contract_terms = None
#     if 'compliance_results' not in st.session_state:
#         st.session_state.compliance_results = None

#     # File upload buttons one after another
#     docx_file = st.sidebar.file_uploader("Upload Contract Document (DOCX)", type="docx", key="docx_file")
#     data_file = st.sidebar.file_uploader("Upload Task Descriptions (XLSX or CSV)", type=["xlsx", "csv"], key="data_file")
#     submit_button = st.sidebar.button("Submit")

#     if submit_button and docx_file and data_file:
#         # Extract contract text and terms
#         contract_text = extract_text_from_docx(docx_file)
#         extracted_terms_json = extract_terms_from_contract(contract_text)

#         if extracted_terms_json is None:
#             return
        
#         try:
#             st.session_state.contract_terms = json.loads(extracted_terms_json)
#         except json.JSONDecodeError as e:
#             st.error(f"JSON decoding error: {e}")
#             return
        
#         # Read task descriptions and cost estimates from XLSX or CSV
#         if data_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
#             tasks_df = pd.read_excel(data_file)
#         else:
#             tasks_df = pd.read_csv(data_file)

#         compliance_results = []

#         # Process tasks sequentially
#         for _, row in tasks_df.iterrows():
#             result = analyze_task_compliance(row['Task Description'], row['Amount'], st.session_state.contract_terms)
#             if result is not None:
#                 print(result)
#                 compliance_results.append(result)
        
#         st.session_state.compliance_results = compliance_results
        
#     col1, col2 = st.columns(2)

#     with col1:
#         if st.session_state.contract_terms:
#             st.write("Extracted Contract Terms:")
#             st.json(st.session_state.contract_terms)
            
#             # Download button for contract terms
#             st.download_button(
#                 label="Download Contract Terms",
#                 data=json.dumps(st.session_state.contract_terms, indent=4),
#                 file_name="contract_terms.json",
#                 mime="application/json"
#             )

#     with col2:
#         if st.session_state.compliance_results:
#             st.write("Compliance Results:")
#             st.json(st.session_state.compliance_results)

#             # Download button for compliance results
#             st.download_button(
#                 label="Download Compliance Results",
#                 data=json.dumps(st.session_state.compliance_results, indent=4),
#                 file_name="compliance_results.json",
#                 mime="application/json"
#             )

# if __name__ == "__main__":
#     main()