File size: 10,012 Bytes
fc757ce
a37ef4f
5e48936
 
a37ef4f
5e48936
d6cc25a
 
77de468
23c047e
 
52eb3b0
 
 
a6a5c53
 
 
23a0752
77de468
 
a08c530
23a0752
 
4b92f55
 
 
39e9427
 
 
48d2c46
 
 
2158ccf
 
 
5307bf5
 
 
3619d45
 
 
67c005c
a08c530
 
599c53c
67c005c
 
4c3bc8a
 
 
f474d4a
 
 
880a9a9
 
 
0e34b1b
 
 
df1a01f
 
 
51cb87a
 
 
599c53c
 
7671981
599c53c
6c030df
 
 
df7f0f8
 
a37ef4f
 
4e7c469
 
a37ef4f
6c030df
a37ef4f
cf031ee
a37ef4f
cf031ee
a37ef4f
 
 
 
 
1f2cac2
a37ef4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a914a
 
 
 
 
 
 
 
 
1fef982
a8a914a
1fef982
a8a914a
 
 
 
 
 
a37ef4f
 
a8a914a
a37ef4f
 
a8a914a
a37ef4f
a8a914a
 
a37ef4f
a8a914a
a37ef4f
a8a914a
 
a37ef4f
 
a8a914a
a37ef4f
 
a8a914a
 
a37ef4f
 
a8a914a
 
 
a37ef4f
 
 
 
 
 
 
 
 
 
 
5e48936
a37ef4f
5e48936
a37ef4f
 
 
 
 
 
 
 
 
5e48936
a37ef4f
 
 
5e48936
a37ef4f
 
 
 
e0e7abc
 
 
 
a37ef4f
 
1f2cac2
7eaf946
a37ef4f
 
a8a914a
a37ef4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
import torch

first = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.\n\ninformal english: """

@st.cache(allow_output_mutation=True)
def get_model():

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln86Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln86Paraphrase")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln82Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln82Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln79Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln79Paraphrase")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln74Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln74Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln72Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln72Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln64Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln64Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln60Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln60Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPTNeo1.3BInformalToFormal")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo1.3BInformalToFormal")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln55")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln55")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln51")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln51")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln45")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln49")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln43")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln43")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln41")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln41")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln38")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln38")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln37")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln37")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln36")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln36")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/MediumInformalToFormalLincoln")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln35")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln35")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln31")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln31")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln21")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln21")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/PointsOneSent")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/PointsOneSent")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/PointsToSentence")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/PointsToSentence")
    tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln89Paraphrase")
    model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln89Paraphrase")
    tokenizer2 = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincolnMedium")
    model2 = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincolnMedium")
    return model, model2, tokenizer, tokenizer2
    
model, model2, tokenizer, tokenizer2 = get_model()

st.text('''For Prompt Templates: https://huggingface.co/BigSalmon/InformalToFormalLincoln82Paraphrase''')

temp = st.sidebar.slider("Temperature", 0.7, 1.5)
number_of_outputs = st.sidebar.slider("Number of Outputs", 5, 50)
lengths = st.sidebar.slider("Length", 3, 500)
bad_words = st.text_input("Words You Do Not Want Generated", " core lemon height time ")
logs_outputs = st.sidebar.slider("Logit Outputs", 50, 300)

def run_generate(text, bad_words):
  yo = []
  input_ids = tokenizer.encode(text, return_tensors='pt')
  res = len(tokenizer.encode(text))
  bad_words = bad_words.split()
  bad_word_ids = []
  for bad_word in bad_words: 
    bad_word = " " + bad_word
    ids = tokenizer(bad_word).input_ids
    bad_word_ids.append(ids)
  sample_outputs = model.generate(
    input_ids,
    do_sample=True, 
    max_length= res + lengths, 
    min_length = res + lengths, 
    top_k=50,
    temperature=temp,
    num_return_sequences=number_of_outputs,
    bad_words_ids=bad_word_ids
  )
  for i in range(number_of_outputs):
    e = tokenizer.decode(sample_outputs[i])
    e = e.replace(text, "")
    yo.append(e)
  return yo
  
def BestProbs5(prompt):
  prompt = prompt.strip()
  text = tokenizer.encode(prompt)
  myinput, past_key_values = torch.tensor([text]), None
  myinput = myinput
  logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
  logits = logits[0,-1]
  probabilities = torch.nn.functional.softmax(logits)
  best_logits, best_indices = logits.topk(number_of_outputs)
  best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
  for i in best_words[0:number_of_outputs]:
    #print(i)
    print("\n")
    g = (prompt + i)
    st.write(g)
    l = run_generate(g, "hey")
    st.write(l)
  
def run_generate2(text, bad_words):
  yo = []
  input_ids = tokenizer2.encode(text, return_tensors='pt')
  res = len(tokenizer2.encode(text))
  bad_words = bad_words.split()
  bad_word_ids = []
  for bad_word in bad_words: 
    bad_word = " " + bad_word
    ids = tokenizer2(bad_word).input_ids
    bad_word_ids.append(ids)
  sample_outputs = model2.generate(
    input_ids,
    do_sample=True, 
    max_length= res + lengths, 
    min_length = res + lengths, 
    top_k=50,
    temperature=temp,
    num_return_sequences=number_of_outputs,
    bad_words_ids=bad_word_ids
  )
  for i in range(number_of_outputs):
    e = tokenizer2.decode(sample_outputs[i])
    e = e.replace(text, "")
    yo.append(e)
  return yo
  
def prefix_format(sentence):
  words = sentence.split()
  if "[MASK]" in sentence:
    words2 = words.index("[MASK]")
    #print(words2)
    output = ("<Prefix> " + ' '.join(words[:words2]) + " <Prefix> " + "<Suffix> " + ' '.join(words[words2+1:]) + " <Suffix>" + " <Middle>")
    st.write(output)
  else:
    st.write("Add [MASK] to sentence")
 
with st.form(key='my_form'):
    text = st.text_area(label='Enter sentence', value=first)
    submit_button = st.form_submit_button(label='Submit')
    submit_button2 = st.form_submit_button(label='Submit Log Probs')
    
    submit_button3 = st.form_submit_button(label='Submit Other Model')
    submit_button4 = st.form_submit_button(label='Submit Log Probs Other Model')
    
    submit_button5 = st.form_submit_button(label='Most Prob')
    
    submit_button6 = st.form_submit_button(label='Turn Sentence with [MASK] into <Prefix> Format')
    
    if submit_button:
      translated_text = run_generate(text, bad_words)
      st.write(translated_text if translated_text else "No translation found")
    if submit_button2:
      with torch.no_grad():
        text2 = str(text)
        print(text2)
        text3 = tokenizer.encode(text2)
        myinput, past_key_values = torch.tensor([text3]), None
        myinput = myinput
        logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
        logits = logits[0,-1]
        probabilities = torch.nn.functional.softmax(logits)
        best_logits, best_indices = logits.topk(logs_outputs)
        best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]      
        st.write(best_words)
    if submit_button3:
      translated_text = run_generate2(text, bad_words)
      st.write(translated_text if translated_text else "No translation found")
    if submit_button4:
      text2 = str(text)
      print(text2)
      text3 = tokenizer2.encode(text2)
      myinput, past_key_values = torch.tensor([text3]), None
      myinput = myinput
      logits, past_key_values = model2(myinput, past_key_values = past_key_values, return_dict=False)
      logits = logits[0,-1]
      probabilities = torch.nn.functional.softmax(logits)
      best_logits, best_indices = logits.topk(logs_outputs)
      best_words = [tokenizer2.decode([idx.item()]) for idx in best_indices]      
      st.write(best_words)
    if submit_button5:
      BestProbs5(text)
    if submit_button6:
      text2 = str(text)
      prefix_format(text2)