Spaces:
Runtime error
Runtime error
Simon Salmon
commited on
Commit
·
5e48936
1
Parent(s):
fc757ce
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,117 +1,35 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
|
| 3 |
import pandas as pd
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def display_table(df: pd.DataFrame, subheader: str):
|
| 37 |
-
st.subheader(subheader)
|
| 38 |
-
st.table(df)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def setup():
|
| 42 |
-
st.markdown(STYLE, unsafe_allow_html=True)
|
| 43 |
-
st.markdown(
|
| 44 |
-
"""
|
| 45 |
-
# 🇮🇩 Indonesian RoBERTa Base
|
| 46 |
-
|
| 47 |
-
Demo Powered by [Indonesian RoBERTa Base](https://huggingface.co/flax-community/indonesian-roberta-base).
|
| 48 |
-
"""
|
| 49 |
-
)
|
| 50 |
-
st.sidebar.subheader("Settings")
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
def main():
|
| 54 |
-
setup()
|
| 55 |
-
|
| 56 |
-
analyze = st.sidebar.selectbox(
|
| 57 |
-
"What should we analyze?",
|
| 58 |
-
("Emotion", "Sentiment"),
|
| 59 |
-
help="Classifier model to choose for text analysis",
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
user_input = st.text_input(
|
| 63 |
-
f"Insert a sentence to predict with a {MASK_TOKEN} token // Masukkan kalimat untuk diisi dengan token {MASK_TOKEN}",
|
| 64 |
-
value=f"Gila! Hari ini aku {MASK_TOKEN} banget..",
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
mlm_model = "BigSalmon/BestMask2"
|
| 68 |
-
mask_api = InferenceApi(mlm_model)
|
| 69 |
-
|
| 70 |
-
if analyze == "Emotion":
|
| 71 |
-
sa_model = "StevenLimcorn/indonesian-roberta-base-emotion-classifier"
|
| 72 |
-
elif analyze == "Sentiment":
|
| 73 |
-
sa_model = "w11wo/indonesian-roberta-base-sentiment-classifier"
|
| 74 |
-
|
| 75 |
-
sa_pipeline = pipeline("sentiment-analysis", model=sa_model, tokenizer=sa_model)
|
| 76 |
-
|
| 77 |
-
if len(user_input) > 0:
|
| 78 |
-
try:
|
| 79 |
-
user_input.index(MASK_TOKEN)
|
| 80 |
-
except ValueError:
|
| 81 |
-
st.error(
|
| 82 |
-
f"Please enter a sentence with the correct {MASK_TOKEN} token // Harap masukkan kalimat dengan token {MASK_TOKEN} yang benar"
|
| 83 |
-
)
|
| 84 |
-
else:
|
| 85 |
-
# render masked language modeling table
|
| 86 |
-
mlm_result = mask_api(inputs=user_input)
|
| 87 |
-
|
| 88 |
-
if mlm_result == None:
|
| 89 |
-
st.write("Model is loading. Please try again later...")
|
| 90 |
-
return
|
| 91 |
-
|
| 92 |
-
mlm_df = pd.DataFrame(mlm_result)
|
| 93 |
-
mlm_df.drop(columns=["token", "token_str"], inplace=True)
|
| 94 |
-
mlm_df_styled = mlm_df.copy(deep=False)
|
| 95 |
-
mlm_df_styled = mlm_df_styled.style.set_properties(
|
| 96 |
-
subset=["sequence", "score"], **{"text-align": "left"}
|
| 97 |
-
)
|
| 98 |
-
display_table(mlm_df_styled, "🎈 Top 5 Predictions")
|
| 99 |
-
|
| 100 |
-
# render sentiment analysis table
|
| 101 |
-
sa_df = pd.DataFrame(columns=["sequence", "label", "score"])
|
| 102 |
-
for sequence in mlm_df["sequence"].values:
|
| 103 |
-
sa_output = sa_pipeline(sequence) # predict for every mlm output
|
| 104 |
-
result_dict = {"sequence": sequence}
|
| 105 |
-
result_dict.update(sa_output[0])
|
| 106 |
-
sa_df = sa_df.append(result_dict, ignore_index=True)
|
| 107 |
-
|
| 108 |
-
sa_df["label"] = sa_df["label"].apply(lambda x: x + " " + EMOJI_MAP[x])
|
| 109 |
-
sa_df_styled = sa_df.copy(deep=False)
|
| 110 |
-
sa_df_styled = sa_df_styled.style.set_properties(
|
| 111 |
-
subset=["sequence", "label", "score"], **{"text-align": "left"}
|
| 112 |
-
)
|
| 113 |
-
display_table(sa_df_styled, "🤔 By saying that, I guess you are feeling..")
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
if __name__ == "__main__":
|
| 117 |
-
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from transformers import ElectraModel, AutoConfig, GPT2LMHeadModel
|
| 8 |
+
from transformers.activations import get_activation
|
| 9 |
+
from transformers import AutoTokenizer
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
st.title('KoGPT2 Demo')
|
| 13 |
+
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained("skt/kogpt2-base-v2")
|
| 17 |
+
model = GPT2LMHeadModel.from_pretrained('skt/kogpt2-base-v2')
|
| 18 |
+
|
| 19 |
+
with st.form(key='my_form'):
|
| 20 |
+
text_input = st.text_input(label='Enter sentence')
|
| 21 |
+
submit_button = st.form_submit_button(label='Submit')
|
| 22 |
+
|
| 23 |
+
if submit_button:
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
inputs = tokenizer.encode(text_input)
|
| 26 |
+
gen_ids = model.generate(torch.tensor([inputs]),
|
| 27 |
+
max_length=128,
|
| 28 |
+
repetition_penalty=2.0,
|
| 29 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 30 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 31 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 32 |
+
use_cache=True)
|
| 33 |
+
generated = tokenizer.decode(gen_ids[0,:].tolist())
|
| 34 |
+
|
| 35 |
+
st.write(generated)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|