Spaces:
Sleeping
Sleeping
update: netron embedding
Browse files
app.py
CHANGED
@@ -1,48 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
-
import netron
|
3 |
import os
|
4 |
-
import threading
|
5 |
import time
|
6 |
-
from PIL import Image
|
7 |
import cv2
|
8 |
import numpy as np
|
9 |
-
import
|
10 |
-
import base64
|
11 |
from yolov5 import xai_yolov5
|
12 |
from yolov8 import xai_yolov8s
|
13 |
|
14 |
-
#
|
15 |
sample_images = {
|
16 |
"Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
|
17 |
"Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
|
18 |
}
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
-
preloaded_model_file = os.path.join(os.getcwd(), "weight_files/yolov5.onnx") # Example path
|
22 |
-
|
23 |
def load_sample_image(sample_name):
|
24 |
-
"""Load a sample image based on user selection."""
|
25 |
image_path = sample_images.get(sample_name)
|
26 |
if image_path and os.path.exists(image_path):
|
27 |
return Image.open(image_path)
|
28 |
return None
|
29 |
|
|
|
30 |
def process_image(sample_choice, uploaded_image, yolo_versions):
|
31 |
-
"""Process the image using selected YOLO models."""
|
32 |
if uploaded_image is not None:
|
33 |
-
image = uploaded_image
|
34 |
else:
|
35 |
-
image = load_sample_image(sample_choice)
|
36 |
|
37 |
image = np.array(image)
|
38 |
image = cv2.resize(image, (640, 640))
|
39 |
result_images = []
|
40 |
|
41 |
-
# Encode image to base64
|
42 |
-
_, buffer = cv2.imencode('.jpg', image)
|
43 |
-
image_base64 = base64.b64encode(buffer).decode('utf-8')
|
44 |
-
|
45 |
-
# Process image with each selected YOLO version
|
46 |
for yolo_version in yolo_versions:
|
47 |
if yolo_version == "yolov5":
|
48 |
result_images.append(xai_yolov5(image))
|
@@ -53,19 +43,14 @@ def process_image(sample_choice, uploaded_image, yolo_versions):
|
|
53 |
|
54 |
return result_images
|
55 |
|
56 |
-
|
57 |
-
"""Start the Netron server in a separate thread."""
|
58 |
-
threading.Thread(target=netron.start, args=(model_file,), daemon=True).start()
|
59 |
-
time.sleep(1) # Give some time for the server to start
|
60 |
-
return "http://localhost:8080" # Default Netron URL
|
61 |
-
|
62 |
def view_model():
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
# Custom CSS for styling (optional)
|
71 |
custom_css = """
|
@@ -78,13 +63,13 @@ custom_css = """
|
|
78 |
}
|
79 |
"""
|
80 |
|
|
|
81 |
with gr.Blocks(css=custom_css) as interface:
|
82 |
-
gr.Markdown("# XAI: Visualize Object Detection
|
83 |
-
|
84 |
default_sample = "Sample 1"
|
85 |
|
86 |
with gr.Row():
|
87 |
-
# Left side: Sample selection and upload image
|
88 |
with gr.Column():
|
89 |
sample_selection = gr.Radio(
|
90 |
choices=list(sample_images.keys()),
|
@@ -112,7 +97,7 @@ with gr.Blocks(css=custom_css) as interface:
|
|
112 |
label="Selected Sample Image",
|
113 |
)
|
114 |
|
115 |
-
#
|
116 |
with gr.Row():
|
117 |
result_gallery = gr.Gallery(
|
118 |
label="Results",
|
@@ -120,9 +105,9 @@ with gr.Blocks(css=custom_css) as interface:
|
|
120 |
rows=1,
|
121 |
height=500,
|
122 |
)
|
|
|
123 |
|
124 |
-
|
125 |
-
|
126 |
sample_selection.change(
|
127 |
fn=load_sample_image,
|
128 |
inputs=sample_selection,
|
@@ -135,9 +120,9 @@ with gr.Blocks(css=custom_css) as interface:
|
|
135 |
outputs=[result_gallery],
|
136 |
)
|
137 |
|
138 |
-
#
|
139 |
-
netron_display.value = view_model()
|
140 |
|
141 |
-
#
|
142 |
if __name__ == "__main__":
|
143 |
interface.launch(share=True)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
|
|
3 |
import time
|
|
|
4 |
import cv2
|
5 |
import numpy as np
|
6 |
+
from PIL import Image
|
|
|
7 |
from yolov5 import xai_yolov5
|
8 |
from yolov8 import xai_yolov8s
|
9 |
|
10 |
+
# Paths
|
11 |
sample_images = {
|
12 |
"Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
|
13 |
"Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
|
14 |
}
|
15 |
+
preloaded_model_file = os.path.join(os.getcwd(), "weight_files/yolov5.onnx") # Update as needed
|
16 |
+
netron_html_file = os.path.join(os.getcwd(), "model_visualization.html") # Netron exported file
|
17 |
|
18 |
+
# Load sample images
|
|
|
|
|
19 |
def load_sample_image(sample_name):
|
|
|
20 |
image_path = sample_images.get(sample_name)
|
21 |
if image_path and os.path.exists(image_path):
|
22 |
return Image.open(image_path)
|
23 |
return None
|
24 |
|
25 |
+
# Process image with YOLO models
|
26 |
def process_image(sample_choice, uploaded_image, yolo_versions):
|
|
|
27 |
if uploaded_image is not None:
|
28 |
+
image = uploaded_image
|
29 |
else:
|
30 |
+
image = load_sample_image(sample_choice)
|
31 |
|
32 |
image = np.array(image)
|
33 |
image = cv2.resize(image, (640, 640))
|
34 |
result_images = []
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
for yolo_version in yolo_versions:
|
37 |
if yolo_version == "yolov5":
|
38 |
result_images.append(xai_yolov5(image))
|
|
|
43 |
|
44 |
return result_images
|
45 |
|
46 |
+
# Embed Netron visualization (Static HTML Export)
|
|
|
|
|
|
|
|
|
|
|
47 |
def view_model():
|
48 |
+
if os.path.exists(netron_html_file):
|
49 |
+
with open(netron_html_file, "r") as f:
|
50 |
+
html_content = f.read()
|
51 |
+
return html_content
|
52 |
+
else:
|
53 |
+
return "<p style='color: red;'>Netron export not found. Generate HTML export and place it in the correct path.</p>"
|
54 |
|
55 |
# Custom CSS for styling (optional)
|
56 |
custom_css = """
|
|
|
63 |
}
|
64 |
"""
|
65 |
|
66 |
+
# Gradio Interface
|
67 |
with gr.Blocks(css=custom_css) as interface:
|
68 |
+
gr.Markdown("# XAI: Visualize Object Detection with YOLO Models")
|
69 |
+
|
70 |
default_sample = "Sample 1"
|
71 |
|
72 |
with gr.Row():
|
|
|
73 |
with gr.Column():
|
74 |
sample_selection = gr.Radio(
|
75 |
choices=list(sample_images.keys()),
|
|
|
97 |
label="Selected Sample Image",
|
98 |
)
|
99 |
|
100 |
+
# Results and Netron Visualization
|
101 |
with gr.Row():
|
102 |
result_gallery = gr.Gallery(
|
103 |
label="Results",
|
|
|
105 |
rows=1,
|
106 |
height=500,
|
107 |
)
|
108 |
+
netron_display = gr.HTML(label="Model Architecture")
|
109 |
|
110 |
+
# Callbacks
|
|
|
111 |
sample_selection.change(
|
112 |
fn=load_sample_image,
|
113 |
inputs=sample_selection,
|
|
|
120 |
outputs=[result_gallery],
|
121 |
)
|
122 |
|
123 |
+
# Load Netron HTML into the iframe
|
124 |
+
netron_display.value = view_model()
|
125 |
|
126 |
+
# Launch Gradio
|
127 |
if __name__ == "__main__":
|
128 |
interface.launch(share=True)
|