Spaces:
Sleeping
Sleeping
update: file encoding
Browse files
app.py
CHANGED
|
@@ -3,11 +3,13 @@ import netron
|
|
| 3 |
import os
|
| 4 |
import threading
|
| 5 |
import time
|
| 6 |
-
import requests
|
| 7 |
-
import json
|
| 8 |
from PIL import Image
|
| 9 |
import cv2
|
| 10 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Sample images directory
|
| 13 |
sample_images = {
|
|
@@ -17,7 +19,6 @@ sample_images = {
|
|
| 17 |
|
| 18 |
# Preloaded model file path (update this path as needed)
|
| 19 |
preloaded_model_file = os.path.join(os.getcwd(), "weight_files/yolov5.onnx") # Example path
|
| 20 |
-
onnx_endpoint = "http://localhost:8080/v1/models/yolov5:predict" # ONNX model endpoint
|
| 21 |
|
| 22 |
def load_sample_image(sample_name):
|
| 23 |
"""Load a sample image based on user selection."""
|
|
@@ -26,40 +27,29 @@ def load_sample_image(sample_name):
|
|
| 26 |
return Image.open(image_path)
|
| 27 |
return None
|
| 28 |
|
| 29 |
-
def preprocess_image(image):
|
| 30 |
-
"""Preprocess the image for ONNX model input."""
|
| 31 |
-
image = np.array(image)
|
| 32 |
-
image = cv2.resize(image, (640, 640))
|
| 33 |
-
_, buffer = cv2.imencode('.jpg', image)
|
| 34 |
-
image_bytes = buffer.tobytes()
|
| 35 |
-
return image_bytes
|
| 36 |
-
|
| 37 |
def process_image(sample_choice, uploaded_image, yolo_versions):
|
| 38 |
-
"""Process the image using selected YOLO models
|
| 39 |
if uploaded_image is not None:
|
| 40 |
image = uploaded_image # Use the uploaded image
|
| 41 |
else:
|
| 42 |
image = load_sample_image(sample_choice) # Use selected sample image
|
| 43 |
|
| 44 |
-
|
|
|
|
| 45 |
result_images = []
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
for yolo_version in yolo_versions:
|
| 48 |
if yolo_version == "yolov5":
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
try:
|
| 53 |
-
response = requests.post(onnx_endpoint, headers=headers, data=json.dumps(data))
|
| 54 |
-
if response.status_code == 200:
|
| 55 |
-
results = response.json()
|
| 56 |
-
result_images.append((image, str(results))) # Example placeholder result
|
| 57 |
-
else:
|
| 58 |
-
result_images.append((image, f"Error: {response.status_code}"))
|
| 59 |
-
except Exception as e:
|
| 60 |
-
result_images.append((image, f"Failed: {str(e)}"))
|
| 61 |
else:
|
| 62 |
-
result_images.append((image, f"{yolo_version} not yet implemented."))
|
| 63 |
|
| 64 |
return result_images
|
| 65 |
|
|
@@ -109,7 +99,7 @@ with gr.Blocks(css=custom_css) as interface:
|
|
| 109 |
)
|
| 110 |
|
| 111 |
selected_models = gr.CheckboxGroup(
|
| 112 |
-
choices=["yolov5"],
|
| 113 |
value=["yolov5"],
|
| 114 |
label="Select Model(s)",
|
| 115 |
)
|
|
|
|
| 3 |
import os
|
| 4 |
import threading
|
| 5 |
import time
|
|
|
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
import cv2
|
| 8 |
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
import base64
|
| 11 |
+
from yolov5 import xai_yolov5
|
| 12 |
+
from yolov8 import xai_yolov8s
|
| 13 |
|
| 14 |
# Sample images directory
|
| 15 |
sample_images = {
|
|
|
|
| 19 |
|
| 20 |
# Preloaded model file path (update this path as needed)
|
| 21 |
preloaded_model_file = os.path.join(os.getcwd(), "weight_files/yolov5.onnx") # Example path
|
|
|
|
| 22 |
|
| 23 |
def load_sample_image(sample_name):
|
| 24 |
"""Load a sample image based on user selection."""
|
|
|
|
| 27 |
return Image.open(image_path)
|
| 28 |
return None
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def process_image(sample_choice, uploaded_image, yolo_versions):
|
| 31 |
+
"""Process the image using selected YOLO models."""
|
| 32 |
if uploaded_image is not None:
|
| 33 |
image = uploaded_image # Use the uploaded image
|
| 34 |
else:
|
| 35 |
image = load_sample_image(sample_choice) # Use selected sample image
|
| 36 |
|
| 37 |
+
image = np.array(image)
|
| 38 |
+
image = cv2.resize(image, (640, 640))
|
| 39 |
result_images = []
|
| 40 |
|
| 41 |
+
# Encode image to base64
|
| 42 |
+
_, buffer = cv2.imencode('.jpg', image)
|
| 43 |
+
image_base64 = base64.b64encode(buffer).decode('utf-8')
|
| 44 |
+
|
| 45 |
+
# Process image with each selected YOLO version
|
| 46 |
for yolo_version in yolo_versions:
|
| 47 |
if yolo_version == "yolov5":
|
| 48 |
+
result_images.append(xai_yolov5(image))
|
| 49 |
+
elif yolo_version == "yolov8s":
|
| 50 |
+
result_images.append(xai_yolov8s(image))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
else:
|
| 52 |
+
result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
|
| 53 |
|
| 54 |
return result_images
|
| 55 |
|
|
|
|
| 99 |
)
|
| 100 |
|
| 101 |
selected_models = gr.CheckboxGroup(
|
| 102 |
+
choices=["yolov5", "yolov8s"],
|
| 103 |
value=["yolov5"],
|
| 104 |
label="Select Model(s)",
|
| 105 |
)
|