NeuralVista / yolov8.py
BhumikaMak's picture
Debug: yolov8 target lyr
978b355
raw
history blame
2.98 kB
from ultralytics import YOLO
import torch
import cv2
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
import gradio as gr
# Global Color Palette
COLORS = np.random.uniform(0, 255, size=(80, 3))
def parse_detections(results):
detections = results.pandas().xyxy[0].to_dict()
boxes, colors, names = [], [], []
for i in range(len(detections["xmin"])):
confidence = detections["confidence"][i]
if confidence < 0.2:
continue
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
name, category = detections["name"][i], int(detections["class"][i])
boxes.append((xmin, ymin, xmax, ymax))
colors.append(COLORS[category])
names.append(name)
return boxes, colors, names
def draw_detections(boxes, colors, names, img):
for box, color, name in zip(boxes, colors, names):
xmin, ymin, xmax, ymax = box
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
cv2.putText(img, name, (xmin, ymin - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
lineType=cv2.LINE_AA)
return img
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
cam = EigenCAM(model, target_layers)
grayscale_cam = cam(tensor)[0, :, :]
img_float = np.float32(rgb_img) / 255
# Generate Grad-CAM
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
# Renormalize Grad-CAM inside bounding boxes
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
for x1, y1, x2, y2 in boxes:
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
renormalized_cam = scale_cam_image(renormalized_cam)
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
return cam_image, renormalized_cam_image
def xai_yolov8n(image):
# Load YOLOv8n model
model = YOLO('yolov8n.pt') # Load YOLOv8n pre-trained weights
model.eval()
model.cpu()
target_layers = [model.model.model[-2]] # Grad-CAM target layer
# Run YOLO detection
results = model([image])
boxes, colors, names = parse_detections(results)
detections_img = draw_detections(boxes, colors, names, image.copy())
# Prepare input tensor for Grad-CAM
img_float = np.float32(image) / 255
transform = transforms.ToTensor()
tensor = transform(img_float).unsqueeze(0)
# Grad-CAM visualization
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes)
# Combine results
final_image = np.hstack((image, cam_image, renormalized_cam_image))
caption = "Results using YOLOv8n"
return Image.fromarray(final_image), caption