Spaces:
Sleeping
Sleeping
Commit
·
978b355
1
Parent(s):
afe9924
Debug: yolov8 target lyr
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ interface = gr.Interface(
|
|
26 |
inputs=[
|
27 |
gr.Image(type="pil", label="Upload an Image"),
|
28 |
gr.CheckboxGroup(
|
29 |
-
choices=["yolov5", "
|
30 |
value=["yolov5"], # Set default selection to YOLOv5
|
31 |
label="Select Model(s)",
|
32 |
)
|
|
|
26 |
inputs=[
|
27 |
gr.Image(type="pil", label="Upload an Image"),
|
28 |
gr.CheckboxGroup(
|
29 |
+
choices=["yolov5", "yolov8n", "yolov10"],
|
30 |
value=["yolov5"], # Set default selection to YOLOv5
|
31 |
label="Select Model(s)",
|
32 |
)
|
yolov8.py
CHANGED
@@ -1,29 +1,32 @@
|
|
1 |
from ultralytics import YOLO
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
-
import
|
6 |
-
from
|
7 |
-
from
|
|
|
8 |
|
9 |
-
#
|
10 |
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
11 |
|
12 |
-
def
|
|
|
13 |
boxes, colors, names = [], [], []
|
14 |
-
|
15 |
-
|
16 |
-
confidence
|
17 |
-
if confidence < 0.2: # Filter out low-confidence detections
|
18 |
continue
|
19 |
-
xmin, ymin
|
20 |
-
|
21 |
-
name =
|
22 |
boxes.append((xmin, ymin, xmax, ymax))
|
23 |
colors.append(COLORS[category])
|
24 |
names.append(name)
|
25 |
return boxes, colors, names
|
26 |
|
|
|
27 |
def draw_detections(boxes, colors, names, img):
|
28 |
for box, color, name in zip(boxes, colors, names):
|
29 |
xmin, ymin, xmax, ymax = box
|
@@ -33,35 +36,47 @@ def draw_detections(boxes, colors, names, img):
|
|
33 |
lineType=cv2.LINE_AA)
|
34 |
return img
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
model.eval()
|
|
|
|
|
|
|
41 |
|
42 |
# Run YOLO detection
|
43 |
-
results = model(image)
|
44 |
-
boxes, colors, names =
|
45 |
detections_img = draw_detections(boxes, colors, names, image.copy())
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
cam_map = grad_cam(image_tensor)
|
59 |
-
|
60 |
-
# Overlay Grad-CAM mask onto original image
|
61 |
-
cam_image = overlay_mask(image, cam_map.squeeze(0).cpu().numpy(), alpha=0.5)
|
62 |
-
|
63 |
-
# Combine original image and Grad-CAM image
|
64 |
-
final_image = np.hstack((np.array(image), cam_image))
|
65 |
-
caption = "Results using YOLOv8 and Grad-CAM via torchcam"
|
66 |
-
|
67 |
return Image.fromarray(final_image), caption
|
|
|
1 |
from ultralytics import YOLO
|
2 |
+
import torch
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
from pytorch_grad_cam import EigenCAM
|
8 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
9 |
+
import gradio as gr
|
10 |
|
11 |
+
# Global Color Palette
|
12 |
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
13 |
|
14 |
+
def parse_detections(results):
|
15 |
+
detections = results.pandas().xyxy[0].to_dict()
|
16 |
boxes, colors, names = [], [], []
|
17 |
+
for i in range(len(detections["xmin"])):
|
18 |
+
confidence = detections["confidence"][i]
|
19 |
+
if confidence < 0.2:
|
|
|
20 |
continue
|
21 |
+
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
|
22 |
+
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
|
23 |
+
name, category = detections["name"][i], int(detections["class"][i])
|
24 |
boxes.append((xmin, ymin, xmax, ymax))
|
25 |
colors.append(COLORS[category])
|
26 |
names.append(name)
|
27 |
return boxes, colors, names
|
28 |
|
29 |
+
|
30 |
def draw_detections(boxes, colors, names, img):
|
31 |
for box, color, name in zip(boxes, colors, names):
|
32 |
xmin, ymin, xmax, ymax = box
|
|
|
36 |
lineType=cv2.LINE_AA)
|
37 |
return img
|
38 |
|
39 |
+
|
40 |
+
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
|
41 |
+
cam = EigenCAM(model, target_layers)
|
42 |
+
grayscale_cam = cam(tensor)[0, :, :]
|
43 |
+
img_float = np.float32(rgb_img) / 255
|
44 |
+
|
45 |
+
# Generate Grad-CAM
|
46 |
+
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
|
47 |
+
|
48 |
+
# Renormalize Grad-CAM inside bounding boxes
|
49 |
+
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
|
50 |
+
for x1, y1, x2, y2 in boxes:
|
51 |
+
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
|
52 |
+
renormalized_cam = scale_cam_image(renormalized_cam)
|
53 |
+
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
|
54 |
+
|
55 |
+
return cam_image, renormalized_cam_image
|
56 |
+
|
57 |
+
|
58 |
+
def xai_yolov8n(image):
|
59 |
+
# Load YOLOv8n model
|
60 |
+
model = YOLO('yolov8n.pt') # Load YOLOv8n pre-trained weights
|
61 |
model.eval()
|
62 |
+
model.cpu()
|
63 |
+
|
64 |
+
target_layers = [model.model.model[-2]] # Grad-CAM target layer
|
65 |
|
66 |
# Run YOLO detection
|
67 |
+
results = model([image])
|
68 |
+
boxes, colors, names = parse_detections(results)
|
69 |
detections_img = draw_detections(boxes, colors, names, image.copy())
|
70 |
|
71 |
+
# Prepare input tensor for Grad-CAM
|
72 |
+
img_float = np.float32(image) / 255
|
73 |
+
transform = transforms.ToTensor()
|
74 |
+
tensor = transform(img_float).unsqueeze(0)
|
75 |
+
|
76 |
+
# Grad-CAM visualization
|
77 |
+
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes)
|
78 |
+
|
79 |
+
# Combine results
|
80 |
+
final_image = np.hstack((image, cam_image, renormalized_cam_image))
|
81 |
+
caption = "Results using YOLOv8n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
return Image.fromarray(final_image), caption
|