Spaces:
Sleeping
Sleeping
File size: 4,230 Bytes
60af537 53bfd89 60af537 f9e81bd c7e11d7 f9e81bd 60af537 f9e81bd c69b39b f9e81bd c69b39b 60af537 4ddc91d d2d1a78 c8e3f60 4ddc91d f9e81bd 4ddc91d 60af537 f9e81bd 60af537 f9e81bd 60af537 f8576f8 4ddc91d f9e81bd 4ddc91d f9e81bd 60af537 4ddc91d f9e81bd 60af537 f8576f8 f9e81bd f8576f8 60af537 4ddc91d 60af537 4ddc91d f9e81bd 0c25380 9acd672 4ddc91d f9e81bd 60af537 f9e81bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter('ignore')
import torch
import cv2
import numpy as np
import torchvision.transforms as transforms
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
from PIL import Image
import gradio as gr
# Global Color Palette
COLORS = np.random.uniform(0, 255, size=(80, 3))
# Function to parse YOLO detections
def parse_detections(results):
detections = results.pandas().xyxy[0].to_dict()
boxes, colors, names = [], [], []
for i in range(len(detections["xmin"])):
confidence = detections["confidence"][i]
if confidence < 0.2:
continue
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
name, category = detections["name"][i], int(detections["class"][i])
boxes.append((xmin, ymin, xmax, ymax))
colors.append(COLORS[category])
names.append(name)
return boxes, colors, names
# Draw bounding boxes and labels
def draw_detections(boxes, colors, names, img):
for box, color, name in zip(boxes, colors, names):
xmin, ymin, xmax, ymax = box
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
cv2.putText(img, name, (xmin, ymin - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
lineType=cv2.LINE_AA)
return img
# Load the appropriate YOLO model based on the version
def load_yolo_model(version="yolov5"):
if version == "yolov5":
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
else:
raise ValueError(f"Unsupported YOLO version: {version}")
model.eval() # Set to evaluation mode
model.cpu()
return model
def process_image(image, yolo_versions=["yolov5"]):
image = np.array(image)
image = cv2.resize(image, (640, 640))
rgb_img = image.copy()
img_float = np.float32(image) / 255
# Image transformation
transform = transforms.ToTensor()
tensor = transform(img_float).unsqueeze(0)
# Initialize list to store result images with captions
result_images = []
# Process each selected YOLO model
for yolo_version in yolo_versions:
# Load the model based on YOLO version
model = load_yolo_model(yolo_version)
target_layers = [model.model.model.model[-2]] # Assumes last layer is used for Grad-CAM
# Run YOLO detection
results = model([rgb_img])
boxes, colors, names = parse_detections(results)
detections_img = draw_detections(boxes, colors, names, rgb_img.copy())
# Grad-CAM visualization
cam = EigenCAM(model, target_layers)
grayscale_cam = cam(tensor)[0, :, :]
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
# Renormalize Grad-CAM inside bounding boxes
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
for x1, y1, x2, y2 in boxes:
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
renormalized_cam = scale_cam_image(renormalized_cam)
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
# Concatenate images and prepare the caption
final_image = np.hstack((rgb_img, cam_image, renormalized_cam_image))
caption = f"Results using {yolo_version}"
result_images.append((Image.fromarray(final_image), caption))
return result_images
interface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil", label="Upload an Image"),
gr.CheckboxGroup(
choices=["yolov5"],
value=["yolov5"], # Set the default value (YOLOv5 checked by default)
label="Select Model(s)",
)
],
outputs = gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500),
title="Visualising the key image features that drive decisions with our explainable AI tool.",
description="XAI: Upload an image to visualize object detection of your models.."
)
if __name__ == "__main__":
interface.launch() |