Spaces:
Sleeping
Sleeping
Commit
·
4ddc91d
1
Parent(s):
a33d7fc
Update: add support for other yolo variants
Browse files- app.py +56 -26
- requirements.txt +11 -7
app.py
CHANGED
@@ -40,8 +40,27 @@ def draw_detections(boxes, colors, names, img):
|
|
40 |
lineType=cv2.LINE_AA)
|
41 |
return img
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Main function for Grad-CAM visualization
|
44 |
-
def process_image(image):
|
45 |
image = np.array(image)
|
46 |
image = cv2.resize(image, (640, 640))
|
47 |
rgb_img = image.copy()
|
@@ -51,41 +70,52 @@ def process_image(image):
|
|
51 |
transform = transforms.ToTensor()
|
52 |
tensor = transform(img_float).unsqueeze(0)
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
model
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
-
return
|
81 |
|
82 |
# Gradio Interface
|
83 |
interface = gr.Interface(
|
84 |
fn=process_image,
|
85 |
-
inputs=
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
title="Visualising the key image features that drive decisions with our explainable AI tool.",
|
88 |
-
description="XAI: Upload an image to visualize object detection of your models
|
89 |
)
|
90 |
|
91 |
if __name__ == "__main__":
|
|
|
40 |
lineType=cv2.LINE_AA)
|
41 |
return img
|
42 |
|
43 |
+
# Load the appropriate YOLO model based on the version
|
44 |
+
def load_yolo_model(version="yolov5"):
|
45 |
+
if version == "yolov3":
|
46 |
+
model = torch.hub.load('ultralytics/yolov3', 'yolov3', pretrained=True)
|
47 |
+
elif version == "yolov5":
|
48 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
49 |
+
elif version == "yolov7":
|
50 |
+
model = torch.hub.load('WongKinYiu/yolov7', 'yolov7', pretrained=True)
|
51 |
+
elif version == "yolov8":
|
52 |
+
model = torch.hub.load('ultralytics/yolov5:v7.0', 'yolov5', pretrained=True) # YOLOv8 is part of the yolov5 repo starting from v7.0
|
53 |
+
elif version == "yolov10":
|
54 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5m', pretrained=True) # Placeholder for YOLOv10 (use an appropriate version if available)
|
55 |
+
else:
|
56 |
+
raise ValueError(f"Unsupported YOLO version: {version}")
|
57 |
+
|
58 |
+
model.eval() # Set to evaluation mode
|
59 |
+
model.cpu()
|
60 |
+
return model
|
61 |
+
|
62 |
# Main function for Grad-CAM visualization
|
63 |
+
def process_image(image, yolo_versions=["yolov5"]):
|
64 |
image = np.array(image)
|
65 |
image = cv2.resize(image, (640, 640))
|
66 |
rgb_img = image.copy()
|
|
|
70 |
transform = transforms.ToTensor()
|
71 |
tensor = transform(img_float).unsqueeze(0)
|
72 |
|
73 |
+
# Initialize list to store result images
|
74 |
+
result_images = []
|
75 |
+
|
76 |
+
# Process each selected YOLO model
|
77 |
+
for yolo_version in yolo_versions:
|
78 |
+
# Load the model based on YOLO version
|
79 |
+
model = load_yolo_model(yolo_version)
|
80 |
+
target_layers = [model.model.model.model[-2]] # Assumes last layer is used for Grad-CAM
|
81 |
|
82 |
+
# Run YOLO detection
|
83 |
+
results = model([rgb_img])
|
84 |
+
boxes, colors, names = parse_detections(results)
|
85 |
+
detections_img = draw_detections(boxes, colors, names, rgb_img.copy())
|
86 |
|
87 |
+
# Grad-CAM visualization
|
88 |
+
cam = EigenCAM(model, target_layers)
|
89 |
+
grayscale_cam = cam(tensor)[0, :, :]
|
90 |
+
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
|
91 |
|
92 |
+
# Renormalize Grad-CAM inside bounding boxes
|
93 |
+
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
|
94 |
+
for x1, y1, x2, y2 in boxes:
|
95 |
+
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
|
96 |
+
renormalized_cam = scale_cam_image(renormalized_cam)
|
97 |
+
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
|
98 |
|
99 |
+
# Concatenate images
|
100 |
+
final_image = np.hstack((rgb_img, cam_image, renormalized_cam_image))
|
101 |
+
result_images.append((yolo_version, Image.fromarray(final_image)))
|
102 |
|
103 |
+
return result_images
|
104 |
|
105 |
# Gradio Interface
|
106 |
interface = gr.Interface(
|
107 |
fn=process_image,
|
108 |
+
inputs=[
|
109 |
+
gr.Image(type="pil", label="Upload an Image"),
|
110 |
+
gr.CheckboxGroup(
|
111 |
+
choices=["yolov3", "yolov5", "yolov7", "yolov8", "yolov10"],
|
112 |
+
label="Select YOLO Models",
|
113 |
+
default=["yolov5"]
|
114 |
+
)
|
115 |
+
],
|
116 |
+
outputs=gr.Gallery(label="Results", elem_id="gallery").style(grid=[2], height=500),
|
117 |
title="Visualising the key image features that drive decisions with our explainable AI tool.",
|
118 |
+
description="XAI: Upload an image to visualize object detection of your models.."
|
119 |
)
|
120 |
|
121 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
-
torch
|
2 |
-
torchvision
|
3 |
-
torchaudio
|
4 |
-
numpy
|
5 |
-
pillow
|
6 |
-
opencv-python
|
7 |
git+https://github.com/jacobgil/pytorch-grad-cam.git
|
8 |
-
gradio
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.1.0
|
2 |
+
torchvision==0.15.0
|
3 |
+
torchaudio==2.1.0
|
4 |
+
numpy==1.23.4
|
5 |
+
pillow==9.3.0
|
6 |
+
opencv-python==4.6.0.66
|
7 |
git+https://github.com/jacobgil/pytorch-grad-cam.git
|
8 |
+
gradio==3.28.2
|
9 |
+
git+https://github.com/ultralytics/yolov5.git # For YOLOv5
|
10 |
+
git+https://github.com/WongKinYiu/yolov7.git # For YOLOv7
|
11 |
+
git+https://github.com/ultralytics/ultralytics.git # For YOLOv8
|
12 |
+
git+https://github.com/saeedanwar/yolov10.git # For YOLOv10
|